AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Accelerated reconstruction of ZIF-67 with significantly enhanced glucose detection sensitivity

Huihui Jin1,2Weihao Zeng3Wei Qian3Lun Li3Pengxia Ji3Zhengying Li1,3( )Daping He2( )
School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Show Author Information

Graphical Abstract

Electrochemical activation promotes the reconstruction of zeolitic imidazolate framework-67 (ZIF-67) to generate CoOOH, achieving efficient and stable glucose detection.

Abstract

Research on metal-organic framework (MOF)-based non-enzymatic glucose sensors usually ignores the impact of the surface reconstruction degree of MOF on the activity of catalyzing glucose oxidation. In this work, we choose zeolitic imidazolate framework-67 (ZIF-67), which is commonly used in glucose sensing, as a representative to investigate the influence of reconstruction degree on its structure and glucose catalytic performance. By employing the electrochemical activation strategy, the activity of ZIF-67 in catalyzing glucose gradually increased with the prolongation of the activation time, reaching the optimum after 2 h activation. The detection sensitivity of the activated ZIF-67 was 19 times higher than that of the initial ZIF-67, and the limit of detection (LOD) was lowered from 7 to 0.4 μM. Our findings demonstrate that the oxidation degree of ZIF-67 deepened rapidly with continuously activation and was basically reconstructed to CoOOH after 2 h activation, accompanied by a morphological change from cuboctahedral to flower-like. Simultaneously, theoretical investigation revealed that ZIF-67 is not suitable as a stable glucose sensor electrode since the adsorbed glucose molecules hasten the dissociation of ligands and the breaking of Co–N bond in ZIF-67. Therefore, our work has important implications for the rational design of next-generation MOF-based glucose sensors.

Electronic Supplementary Material

Download File(s)
12274_2023_6409_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Yao, Y.; Chen, J. Y.; Guo, Y. H.; Lv, T.; Chen, Z. L.; Li, N.; Cao, S. K.; Chen, B. D.; Chen, T. Integration of interstitial fluid extraction and glucose detection in one device for wearable non-invasive blood glucose sensors. Biosens. Bioelectron. 2021, 179, 113078.

[2]

Zuo, M.; Jia, W. L.; Feng, Y. C.; Zeng, X. H.; Tang, X.; Sun, Y.; Lin, L. Effective selectivity conversion of glucose to furan chemicals in the aqueous deep eutectic solvent. Renew. Energy 2021, 164, 23–33.

[3]

Feng, F.; Ou, Z. P.; Zhang, F. D.; Chen, J. X.; Huang, J. K.; Wang, J. X.; Zuo, H. Q.; Zeng, J. B. Artificial intelligence-assisted colorimetry for urine glucose detection towards enhanced sensitivity, accuracy, resolution, and anti-illuminating capability. Nano Res. 2023, 16, 12084–12091.

[4]

Du, P. Y.; Niu, Q. X.; Chen, J.; Chen, Y.; Zhao, J.; Lu, X. Q. “Switch-On” fluorescence detection of glucose with high specificity and sensitivity based on silver nanoparticles supported on porphyrin metal-organic frameworks. Anal. Chem. 2020, 92, 7980–7986

[5]

Ramanaviciene, A.; Nastajute, G.; Snitka, V.; Kausaite, A.; German, N.; Barauskas-Memenas, D.; Ramanavicius, A. Spectrophotometric evaluation of gold nanoparticles as red-ox mediator for glucose oxidase. Sens. Actuat. B: Chem. 2009, 137, 483–489.

[6]

Chen, J. Q.; Liu, X. Y.; Zheng, G. C.; Feng, W.; Wang, P.; Gao, J.; Liu, J. B.; Wang, M. Z.; Wang, Q. Y. Detection of glucose based on noble metal nanozymes: Mechanism, activity regulation, and enantioselective recognition. Small 2023, 19, 2205924.

[7]

Ahmadianyazdi, A.; Nguyen, N. H. L.; Xu, J.; Berry, V. Glucose measurement via Raman spectroscopy of graphene: Principles and operation. Nano Res. 2022, 15, 8697–8704.

[8]

Li, H. Y.; Qi, H. J.; Chang, J. F.; Gai, P. P.; Li, F. Recent progress in homogeneous electrochemical sensors and their designs and applications. TrAC Trends Anal. Chem. 2022, 156, 116712.

[9]

Umapathi, R.; Raju, C. V.; Ghoreishian, S. M.; Rani, G. M.; Kumar, K.; Oh, M. H.; Park, J. P.; Huh, Y. S. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev. 2022, 470, 214708.

[10]

Paul, R.; Zhai, Q. F.; Roy, A. K.; Dai, L. M. Charge transfer of carbon nanomaterials for efficient metal-free electrocatalysis. Interdiscip. Mater. 2022, 1, 28–50.

[11]

Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.

[12]

Jiang, J.; Liu, J. P. Iron anode-based aqueous electrochemical energy storage devices: Recent advances and future perspectives. Interdiscip. Mater. 2022, 1, 116–139.

[13]

Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X.; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem. 2019, 131, 4315–4319.

[14]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[15]

Adeel, M.; Asif, K.; Rahman, M. M.; Daniele, S.; Canzonieri, V.; Rizzolio, F. Glucose detection devices and methods based on metal-organic frameworks and related materials. Adv. Funct. Mater. 2021, 31, 2106023.

[16]

Liu, C. S.; Li, J. J.; Pang, H. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord. Chem. Rev. 2020, 410, 213222.

[17]

Fang, C.; Deng, Z.; Cao, G. D.; Chu, Q.; Wu, Y. L.; Li, X.; Peng, X. S.; Han, G. R. Co-ferrocene MOF/glucose oxidase as cascade nanozyme for effective tumor therapy. Adv. Funct. Mater. 2020, 30, 1910085.

[18]

Chen, Z. Y.; Song, S.; Zeng, H. J.; Ge, Z. L.; Liu, B.; Fan, Z. J. 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem. Eng. J. 2023, 471, 144649.

[19]

Zhong, N. Y.; Gao, R.; Shen, Y. J.; Kou, X. X.; Wu, J. Y.; Huang, S. M.; Chen, G. S.; Ouyang, G. F. Enzymes-encapsulated defective metal-organic framework hydrogel coupling with a smartphone for a portable glucose biosensor. Anal. Chem. 2022, 94, 14385–14393.

[20]

Wang, Q. P.; Chen, M.; Xiong, C.; Zhu, X. F.; Chen, C.; Zhou, F. Y.; Dong, Y.; Wang, Y.; Xu, J.; Li, Y. M. et al. Dual confinement of high-loading enzymes within metal-organic frameworks for glucose sensor with enhanced cascade biocatalysis. Biosens. Bioelectron. 2022, 196, 113695.

[21]

Zhang, Q.; Li, P. P.; Wu, J.; Peng, Y.; Pang, H. Pyridine-regulated lamellar nickel-based metal-organic framework (Ni-MOF) for nonenzymatic electrochemical glucose sensor. Adv. Sci. 2023, 10, 2304102.

[22]

Li, Y.; Xie, M. W.; Zhang, X. P.; Liu, Q.; Lin, D. M.; Xu, C. G.; Xie, F. Y.; Sun, X. P. Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. Sens. Actuat. B: Chem. 2019, 278, 126–132.

[23]

Lu, M. X.; Deng, Y. J.; Li, Y. C.; Li, T. B.; Xu, J.; Chen, S. W.; Wang, J. Y. Core–shell MOF@MOF composites for sensitive nonenzymatic glucose sensing in human serum. Anal. Chim. Acta 2020, 1110, 35–43.

[24]

Xia, Y. Y.; Su, T.; Mi, Z. Y.; Feng, Z. Y.; Hong, Y. W.; Hu, X. Y.; Shu, Y. Wearable electrochemical sensor based on bimetallic MOF coated CNT/PDMS film electrode via a dual-stamping method for real-time sweat glucose analysis. Anal. Chim. Acta 2023, 1278, 341754.

[25]

Tong, P. H.; Wang, J. J.; Hu, X. L.; James, T. D.; He, X. P. Metal-organic framework (MOF) hybridized gold nanoparticles as a bifunctional nanozyme for glucose sensing. Chem. Sci. 2023, 14, 7762–7769.

[26]

Xu, T.; Zhang, Y. X.; Liu, M. S.; Wang, H. T.; Ren, J.; Tian, Y. J.; Liu, X.; Zhou, Y. F.; Wang, J. L.; Zhu, W. X. et al. In- situ two-step electrodeposition of α-CD-rGO/Ni-MOF composite film for superior glucose sensing. J. Alloys Compd. 2022, 923, 166418

[27]

Hassanzadeh, J.; Al Lawati, H. A. J.; Bagheri, N. On paper synthesis of multifunctional CeO2 nanoparticles@Fe-MOF composite as a multi-enzyme cascade platform for multiplex colorimetric detection of glucose, fructose, sucrose, and maltose. Biosens. Bioelectron. 2022, 207, 114184.

[28]

Luo, Y. T.; Shupletsov, L.; Vega, M. R. O.; Gutiérrez-Serpa, A.; Khan, A. H.; Brunner, E.; Senkovska, I.; Kaskel, S. Integration of triphenylene-based conductive metal-organic frameworks into carbon nanotube electrodes for boosting nonenzymatic glucose sensing. ACS Appl. Mater. Interfaces 2023, 15, 51435–51443.

[29]

Li, J.; Zhao, J.; Li, S. Q.; Chen, Y.; Lv, W. Q.; Zhang, J. H.; Zhang, L. B.; Zhang, Z.; Lu, X. Q. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 2021, 14, 4689–4695.

[30]

Chen, X.; Feng, X. Z.; Zhan, T.; Xue, Y. T.; Li, H. X.; Han, G. C.; Chen, Z. C.; Kraatz, H. B. Construction of a portable enzyme-free electrochemical glucose detection system based on the synergistic interaction of Cu-MOF and PtNPs. Sens. Actuat. B: Chem. 2023, 395, 134498.

[31]

Akter, R.; Saha, P.; Shah, S. S.; Shaikh, M. N.; Aziz, M. A.; Ahammad, A. J. S. Nanostructured nickel-based non-enzymatic electrochemical glucose sensors. Chem. Asian J. 2022, 17, e202200897.

[32]

Zhao, Z. L.; Wang, P. H.; Hou, S. P. Enhanced electrochemical glucose sensing of Co/Cu-MOF by hydroxyl adsorption induced reactive oxygen species. Anal. Methods 2023, 15, 2766–2772.

[33]
Li, J. Q.; Cai, X. D.; Jiang, P.; Wang, H. Y.; Zhang, S. W.; Sun, T. D.; Chen, C. X.; Fan, K. L. Co-based nanozymatic profiling: Advances spanning chemistry, biomedical, and environmental sciences. Adv. Mater., in press, DOI: 10.1002/adma.202307337.
[34]

Kim, K.; Kim, J.; Bae, Y. S. Zn-Co bimetallic zeolitic imidazolate frameworks as nonenzymatic electrochemical glucose sensors with enhanced sensitivity and chemical stability. ACS Sustain. Chem. Eng. 2022, 10, 11702–11709.

[35]

Chen, X. R.; Liu, D.; Cao, G. J.; Tang, Y.; Wu, C. In situ synthesis of a sandwich-like graphene@ZIF-67 heterostructure for highly sensitive nonenzymatic glucose sensing in human serums. ACS Appl. Mater. Interfaces 2019, 11, 9374–9384.

[36]

Qin, W. L.; Li, X. L.; Zhang, Y. C.; Han, L.; Cheng, Z. J.; Li, Z. J.; Xu, Y. Rational design of Ag nanoparticles on ZIF-67-functionalized carbon nanotube for enzymeless glucose detection and electrocatalytic water oxidation. J. Alloys Compd. 2022, 910, 164878.

[37]

Balasubramanian, P.; He, S. B.; Deng, H. H.; Peng, H. P.; Chen, W. Defects engineered 2D ultrathin cobalt hydroxide nanosheets as highly efficient electrocatalyst for non-enzymatic electrochemical sensing of glucose and l-cysteine. Sens. Actuat. B: Chem. 2020, 320, 128374.

[38]

Wang, S.; Xu, W. H.; Zeng, D. F.; Zhang, R. R.; Shu, T. Amorphous copper cobalt carbonate hydroxide prepared by SILAR on copper foam for non-enzymatic glucose sensing. J. Mater. Sci. 2023, 58, 199–210.

[39]

Zheng, W. R.; Liu, M. J.; Lee, L. Y. S. Electrochemical instability of metal-organic frameworks: In situ spectroelectrochemical investigation of the real active sites. ACS Catal. 2020, 10, 81–92.

[40]

Salauddin, M.; Rana, S. S.; Sharifuzzaman, M.; Lee, S. H.; Zahed, M. A.; Do Shin, Y.; Seonu, S.; Song, H. S.; Bhatta, T.; Park, J. Y. Laser-carbonized MXene/ZIF-67 nanocomposite as an intermediate layer for boosting the output performance of fabric-based triboelectric nanogenerator. Nano Energy 2022, 100, 107462.

[41]

Li, M.; Wang, X.; Liu, K.; Zhu, Z. Y.; Guo, H. Y.; Li, M. Z.; Du, H.; Sun, D. M.; Li, H.; Huang, K. et al. Ce-induced differentiated regulation of Co sites via gradient orbital coupling for bifunctional water-splitting Reactions. Adv. Energy Mater. 2023, 13, 2301162.

[42]

Luan, C. L.; Corva, M.; Hagemann, U.; Wang, H. C.; Heidelmann, M.; Tschulik, K.; Li, T. Atomic-scale insights into morphological, structural, and compositional evolution of CoOOH during oxygen evolution reaction. ACS Catal. 2023, 13, 1400–1411.

[43]

Chen, S. M.; Ma, L. T.; Huang, Z. D.; Liang, G. J.; Zhi, C. Y. In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution electrocatalysts. Cell Rep. Phys. Sci. 2022, 3, 100729.

[44]

Liu, Z. J.; Kong, Z. J.; Cui, S. S.; Liu, L. Y.; Wang, F.; Wang, Y. Y.; Wang, S. Y.; Zang, S. Q. Electrocatalytic mechanism of defect in spinels for water and organics oxidation. Small 2023, 19, 2302216.

[45]

Zhu, Y. Q.; Zhou, H.; Dong, J. C.; Xu, S. M.; Xu, M.; Zheng, L. R.; Xu, Q.; Ma, L. N.; Li, Z. H.; Shao, M. F. et al. Identification of active sites formed on cobalt oxyhydroxide in glucose electrooxidation. Angew. Chem. 2023, 135, e202219048.

Nano Research
Pages 4737-4743
Cite this article:
Jin H, Zeng W, Qian W, et al. Accelerated reconstruction of ZIF-67 with significantly enhanced glucose detection sensitivity. Nano Research, 2024, 17(6): 4737-4743. https://doi.org/10.1007/s12274-023-6409-0
Topics:

841

Views

1

Crossref

0

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 30 November 2023
Revised: 10 December 2023
Accepted: 11 December 2023
Published: 25 January 2024
© Tsinghua University Press 2024
Return