AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tertiary orientation structures enhance the piezoelectricity of MXene/PVDF nanocomposite

Yong Ao1Tao Yang1Guo Tian1Shenglong Wang1Tianpei Xu1Lin Deng1Jieling Zhang1Lihua Tang2Weili Deng1Long Jin1( )Weiqing Yang1,3( )
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Department of Mechanical Engineering, The University of Auckland, Auckland 1010, New Zealand
Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Tertiary orientation structures formed in MXene/PVDF (PVDF: polyvinylidene fluoride) nanocomposite, consisting of molecular chains, crystalline region, and MXene sheets, via a temperature-pressure dual-field regulation method. The MXene/PVDF nanocomposite was used to fabricate piezoelectric sensors, which exhibited excellent comprehensive sensing performance.

Abstract

With the increasing demand for flexible piezoelectric sensor components, research on polyvinylidene fluoride (PVDF) based piezoelectric polymers is mounting up. However, the low dipole polarization and disordered polarization direction presented in PVDF hinder further improvement of piezoelectric properties. Here, we constructed an oriented tertiary structure, consisting of molecular chains, crystalline region, and MXene sheets, in MXene/PVDF nanocomposite via a temperature-pressure dual-field regulation method. The highly oriented PVDF molecular chains form approximately 90% of the β phase. In addition, the crystalline region structure with long-range orientation achieves out of plane polarization orientation. The parallel orientation arrangement of MXene effectively enhances the piezoelectric performances of the nanocomposite, and the current output of the device increases by nearly 23 times. This high output device is used to monitor exercise action, exploring the potential applications in wearable electronics.

Electronic Supplementary Material

Download File(s)
12274_2023_6418_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Qian, X. S.; Chen, X.; Zhu, L.; Zhang, Q. M. Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion. Science 2023, 380, eadg0902.

[2]

Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

[3]

Deng, W. L.; Zhou, Y. H.; Libanori, A.; Chen, G. R.; Yang, W. Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435.

[4]

Ribeiro, C.; Costa, C. M.; Correia, D. M.; Nunes-Pereira, J.; Oliveira, J.; Martins, P.; Gonçalves, R.; Cardoso, V. F.; Lanceros-Méndez, S. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat. Protoc. 2018, 13, 681–704.

[5]

Ning, C. Y.; Zhou, Z. N.; Tan, G. X.; Zhu, Y.; Mao, C. B. Electroactive polymers for tissue regeneration: Developments and perspectives. Progr. Polym. Sci. 2018, 81, 144–162.

[6]

Cui, N. Y.; Gu, L.; Liu, J. M.; Bai, S.; Qiu, J. W.; Fu, J. C.; Kou, X. L.; Liu, H.; Qin, Y.; Wang, Z. L. High performance sound driven triboelectric nanogenerator for harvesting noise energy. Nano Energy 2015, 15, 321–328.

[7]

Yu, J. B.; Hou, X. J.; He, J.; Cui, M.; Wang, C.; Geng, W. P.; Mu, J. L.; Han, B.; Chou, X. J. Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring. Nano Energy 2020, 69, 104437.

[8]

Su, Y. J.; Li, W. X.; Cheng, X. X.; Zhou, Y. H.; Yang, S.; Zhang, X.; Chen, C. X.; Yang, T. N.; Pan, H.; Xie, G. Z. et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 2022, 13, 4867.

[9]

Peng, S. M.; Yang, X.; Yang, Y.; Wang, S. J.; Zhou, Y.; Hu, J.; Li, Q.; He, J. L. Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv. Mater. 2019, 31, 1807722.

[10]

Huang, Y. F.; Rui, G. C.; Li, Q.; Allahyarov, E.; Li, R. P.; Fukuto, M.; Zhong, G. J.; Xu, J. Z.; Li, Z. M.; Taylor, P. L. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure betaβ crystals. Nat. Commun. 2021, 12, 675.

[11]

Hafner, J.; Benaglia, S.; Richheimer, F.; Teuschel, M.; Maier, F. J.; Werner, A.; Wood, S.; Platz, D.; Schneider, M.; Hradil, K. et al. Multi-scale characterisation of a ferroelectric polymer reveals the emergence of a morphological phase transition driven by temperature. Nat. Commun. 2021, 12, 152.

[12]

Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progr. Polym. Sci. 2014, 39, 683–706.

[13]

Qian, X. S.; Han, D. L.; Zheng, L. R.; Chen, J.; Tyagi, M.; Li, Q.; Du, F. H.; Zheng, S. Y.; Huang, X. Y.; Zhang, S. H. et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 2021, 600, 664–669.

[14]

Liu, Y.; Aziguli, H.; Zhang, B.; Xu, W. H.; Lu, W. C.; Bernholc, J.; Wang, Q. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 2018, 562, 96–100.

[15]

Liu, Y.; Zhang, B.; Xu, W. H.; Haibibu, A.; Han, Z. B.; Lu, W. C.; Bernholc, J.; Wang, Q. Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 2020, 19, 1169–1174.

[16]

Shen, X.; Zheng, Q. B.; Kim, J. K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progr. Mater. Sci. 2021, 115, 100708.

[17]

Shepelin, N. A.; Sherrell, P. C.; Skountzos, E. N.; Goudeli, E.; Zhang, J. Z.; Lussini, V. C.; Imtiaz, B.; Usman, K. A. S.; Dicinoski, G. W.; Shapter, J. G. et al. Interfacial piezoelectric polarization locking in printable Ti3C2T x MXene-fluoropolymer composites. Nat. Commun. 2021, 12, 3171.

[18]

Yuan, X. T.; Yan, A.; Lai, Z. W.; Liu, Z. H.; Yu, Z. H.; Li, Z. M.; Cao, Y.; Dong, S. X. A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application. Nano Energy 2022, 98, 107340.

[19]

Zhou, J.; Hou, D. J.; Cheng, S.; Zhang, J. S.; Chen, W.; Zhou, L.; Zhang, P. C. Recent advances in dispersion and alignment of fillers in PVDF-based composites for high-performance dielectric energy storage. Mater. Today Energy 2022, 31, 101208.

[20]

Tian, G.; Deng, W. L.; Yang, T.; Xiong, D.; Zhang, H. R.; Lan, B. L.; Deng, L.; Zhang, B. B.; Jin, L.; Huang, H. C. et al. Insight into interfacial polarization for enhancing piezoelectricity in ferroelectric nanocomposites. Small 2023, 19, 2207947.

[21]

Tian, G.; Deng, W. L.; Xiong, D.; Yang, T.; Zhang, B. B.; Ren, X. R.; Lan, B. L.; Zhong, S.; Jin, L.; Zhang, H. R. et al. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep. Phys. Sci. 2022, 3, 100814.

[22]

Li, X. L.; Huang, Z. D.; Shuck, C. E.; Liang, G. J.; Gogotsi, Y.; Zhi, C. Y. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389–404.

[23]

Xiong, D.; Deng, W. L.; Tian, G.; Zhang, B. B.; Zhong, S.; Xie, Y. T.; Yang, T.; Zhao, H. B.; Yang, W. Q. Controllable in-situ-oxidization of 3D-networked Ti3C2T X -TiO2 photodetectors for large-area flexible optical imaging. Nano Energy 2022, 93, 106889.

[24]

Shekhirev, M.; Shuck, C. E.; Sarycheva, A.; Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progr. Mater. Sci. 2021, 120, 100757.

[25]

Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2T x MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

[26]

Wang, S. L.; Deng, W. L.; Yang, T.; Ao, Y.; Zhang, H. R.; Tian, G.; Deng, L.; Huang, H. C.; Huang, J. F.; Lan, B. L. et al. Bioinspired MXene‐based piezoresistive sensor with two‐stage enhancement for motion capture. Adv. Funct. Mater. 2023, 33, 2214503.

[27]

Lan, B. L.; Xiao, X.; Carlo, A. D.; Deng, W. L.; Yang, T.; Jin, L.; Tian, G.; Ao, Y.; Yang, W. Q.; Chen, J. Topological nanofibers enhanced piezoelectric membranes for soft bioelectronics. Adv. Funct. Mater. 2022, 32, 2207393.

[28]

Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.

[29]

Su, Y. J.; Chen, C. X.; Pan, H.; Yang, Y.; Chen, G. R.; Zhao, X.; Li, W. X.; Gong, Q. C.; Xie, G. Z.; Zhou, Y. H. et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv. Funct. Mater. 2021, 31, 2010962.

[30]

Liu, Y. L.; Tong, W. S.; Wang, L. C.; Zhang, P. P.; Zhang, J. H.; Wang, X. M.; Zhang, S.; Liu, Y.; Liu, S. L.; Wang, S. Q. et al. Phase separation of a PVDF–HFP film on an ice substrate to achieve self-polarisation alignment. Nano Energy 2023, 106, 108082.

[31]

Liu, Z. K.; Li, X. Y.; Zhang, Q. M. Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Appl. Phys. Lett. 2012, 101, 082904.

[32]

Tian, G.; Deng, W. L.; Gao, Y. Y.; Xiong, D.; Yan, C.; He, X. B.; Yang, T.; Jin, L.; Chu, X.; Zhang, H. T. et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574–581.

[33]

Li, Y.; Tang, S. D.; Pan, M. W.; Zhu, L.; Zhong, G. J.; Li, Z. M. Polymorphic extended-chain and folded-chain crystals in poly(vinylidene fluoride) achieved by combination of high pressure and Ion-dipole interaction. Macromolecules 2015, 48, 8565–8573.

[34]
He, S.; Guo, M. F.; Wang, Y.; Liang, Y. H.; Shen, Y. An optical/ferroelectric multiplexing multidimensional nonvolatile memory from ferroelectric polymer. Adv. Mater. 2022 , 34, 2202181.
[35]

Liu, Y.; Zhou, Y.; Qin, H. C.; Yang, T. N.; Chen, X.; Li, L.; Han, Z. B.; Wang, K.; Zhang, B.; Lu, W. C. et al. Electro-thermal actuation in percolative ferroelectric polymer nanocomposites. Nat. Mater. 2023, 22, 873–879.

[36]

Meng, N.; Ren, X. T.; Santagiuliana, G.; Ventura, L.; Zhang, H.; Wu, J. Y.; Yan, H. X.; Reece, M. J.; Bilotti, E. Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat. Commun. 2019, 10, 4535.

[37]

Ren, J. Y.; Ouyang, Q. F.; Ma, G. Q.; Li, Y.; Lei, J.; Huang, H. D.; Jia, L. C.; Lin, H.; Zhong, G. J.; Li, Z. M. Enhanced dielectric and ferroelectric properties of poly(vinylidene fluoride) through annealing oriented crystallites under high pressure. Macromolecules 2022, 55, 2014–2027.

[38]

Zhang, D. P.; Tian, P. F.; Chen, X.; Lu, J.; Huang, R. Pressure-crystallized piezoelectric structures in binary fullerene C70/poly(vinylidene fluoride) based composites. J. Appl. Polymer Sci. 2013, 130, 1823–1833.

[39]

Jin, L.; Ma, S. Y.; Deng, W. L.; Yan, C.; Yang, T.; Chu, X.; Tian, G.; Xiong, D.; Lu, J.; Yang, W. Q. Polarization-free high-crystallization β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor. Nano Energy 2018, 50, 632–638.

[40]

Huang, X. Y.; Sun, B.; Zhu, Y. K.; Li, S. T.; Jiang, P. K. High- k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progr. Mater. Sci. 2019, 100, 187–225.

[41]
Zhang, J. L.; Yang, T.; Tian, G.; Lan, B. L.; Deng, W. L.; Tang, L. H.; Ao, Y.; Sun, Y.; Zeng, W. H.; Ren, X. R. et al. Spatially confined MXene/PVDF nanofiber piezoelectric electronics. Adv. Fiber Mater., in press, DOI: 10.1007/s42765-023-00337-w.
[42]

Yang, T.; Pan, H.; Tian, G.; Zhang, B. B.; Xiong, D.; Gao, Y. Y.; Yan, C.; Chu, X.; Chen, N. J.; Zhong, S. et al. Hierarchically structured PVDF/ZnO core–shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 2020, 72, 104706.

[43]

Yun, J.; Park, J.; Ryoo, M.; Kitchamsetti, N.; Goh, T. S.; Kim, D. Piezo-triboelectric hybridized nanogenerator embedding MXene based bifunctional conductive filler in polymer matrix for boosting electrical power. Nano Energy 2023, 105, 108018.

[44]

Yu, J. B.; Xian, S.; Zhang, Z. P.; Hou, X. J.; He, J.; Mu, J. L.; Geng, W. P.; Qiao, X. J.; Zhang, L.; Chou, X. J. Synergistic piezoelectricity enhanced BaTiO3/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications. Nano Res. 2023, 16, 5490–5502.

Nano Research
Pages 5629-5635
Cite this article:
Ao Y, Yang T, Tian G, et al. Tertiary orientation structures enhance the piezoelectricity of MXene/PVDF nanocomposite. Nano Research, 2024, 17(6): 5629-5635. https://doi.org/10.1007/s12274-023-6418-7
Topics:

921

Views

2

Crossref

0

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 10 October 2023
Revised: 03 December 2023
Accepted: 16 December 2023
Published: 12 January 2024
© Tsinghua University Press 2023
Return