AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Targeted nanostrategies eliminate pre-metastatic niche of cancer

Juan Wang1,2,3Ning Zhang4Xiuping Ding3Chengrui Fu3Xiaodong Li3( )Baosheng Li3( )Jianxun Ding2,5( )Tianmeng Sun1( )
Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, 1 Xinmin Street, Changchun 130061, China
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China
Department of orthopaedics, The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan 250033, China
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
Show Author Information

Graphical Abstract

The primary tumor promotes metastases by inducing the formation of pre-metastatic niche (PMN). Targeting the critical phases in the evolution of PMN by advanced nanostrategies potentially inhibits the establishment of distant metastases.

Abstract

Establishing a pre-metastatic niche (PMN) in secondary organs is a prerequisite for cancer metastases. Despite advances in cancer therapy, the efficient inhibition of PMN formation remains a clinical challenge. Recent advances in understanding the specific characteristics of PMN and advances in nanotechnology have provided hope for manipulating their microenvironments. A series of nanostrategies have been designed to eliminate the PMN, including the removal of pro-metastatic exosomes from the bloodstream for excretion via the intestines, the targeting and scavenging of myeloid-derived suppressor cells, fibroblasts, and critical extracellular matrix components, and the elimination of circulating tumor cells prior to colonization in distant organs. This review summarizes the underlying mechanisms of PMN formation, highlights the anti-PMN efficacy of currently reported nanostrategies, and underlines the unresolved questions.

References

[1]

Ganesh, K.; Massagué, J. Targeting metastatic cancer. Nat. Med. 2021, 27, 34–44.

[2]

Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30.

[3]

Hosseini, H.; Obradovic, M. M. S.; Hoffmann, M.; Harper, K. L.; Sosa, M. S.; Werner-Klein, M.; Nanduri, L. K.; Werno, C.; Ehrl, C.; Maneck, M. et al. Early dissemination seeds metastasis in breast cancer. Nature 2016, 540, 552–558.

[4]

Klein, C. A. Cancer progression and the invisible phase of metastatic colonization. Nat. Rev. Cancer 2020, 20, 681–694.

[5]

Peinado, H.; Zhang, H. Y.; Matei, I. R.; Costa-Silva, B.; Hoshino, A.; Rodrigues, G.; Psaila, B.; Kaplan, R. N.; Bromberg, J. F.; Kang, Y. B. et al. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer 2017, 17, 302–317.

[6]

Psaila, B.; Lyden, D. The metastatic niche: Adapting the foreign soil. Nat. Rev. Cancer 2009, 9, 285–293.

[7]

Satzger, I.; Volker, B.; Meier, A.; Schenck, F.; Kapp, A.; Gutzmer, R. Prognostic significance of isolated HMB45 or Melan A positive cells in Melanoma sentinel lymph nodes. Am. J. Surg. Pathol. 2007, 31, 1175–1180.

[8]

Dewar, D. J.; Newell, B.; Green, M. A.; Topping, A. P.; Powell, B. W. E. M.; Cook, M. G. The microanatomic location of metastatic melanoma in sentinel lymph nodes predicts nonsentinel lymph node involvement. J. Clin. Oncol. 2004, 22, 3345–3349.

[9]

Leong, S. P. L.; Kashani-Sabet, M.; Desmond, R. A.; Kim, R. P.; Nguyen, D. H.; Iwanaga, K.; Treseler, P. A.; Allen, R. E.; Jr Morita, E. T.; Zhang, Y. T. et al. Clinical significance of occult metastatic melanoma in sentinel lymph nodes and other high-risk factors based on long-term follow-up. World J. Surg. 2005, 29, 683–691.

[10]

Itakura, E.; Huang, R. R.; Wen, D. R.; Cochran, A. J. “Stealth” melanoma cells in histology-negative sentinel lymph nodes. Am. J. Surg. Pathol. 2011, 35, 1657–1665.

[11]

Liu, Y.; Cao, X. T. Characteristics and significance of the pre-metastatic niche. Cancer Cell 2016, 30, 668–681.

[12]

Weiss, F.; Lauffenburger, D.; Friedl, P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat. Rev. Cancer 2022, 22, 157–173.

[13]

Gupta, G. P.; Nguyen, D. X.; Chiang, A. C.; Bos, P. D.; Kim, J. Y.; Nadal, C.; Gomis, R. R.; Manova-Todorova, K.; Massagué, J. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 2007, 446, 765–770.

[14]
Qian, B. Z.; Li, J. F.; Zhang, H.; Kitamura, T.; Zhang, J. H.; Campion, L. R.; Kaiser, E. A.; Snyder, L. A.; Pollard, J. W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011 , 475, 222–225.
[15]

Sun, L. J.; Kees, T.; Almeida, A. S.; Liu, B. D.; He, X. Y.; Ng, D.; Han, X.; Spector, D. L.; McNeish, I. A.; Gimotty, P. et al. Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell 2021, 39, 1361–1374.e9.

[16]

Lecker, L. S. M.; Berlato, C.; Maniati, E.; Delaine-Smith, R.; Pearce, O. M. T.; Heath, O.; Nichols, S. J.; Trevisan, C.; Novak, M.; McDermott, J. et al. TGFBI production by macrophages contributes to an immunosuppressive microenvironment in ovarian cancer. Cancer Res. 2021, 81, 5706–5719.

[17]

Lu, Z. H.; Zou, J. L.; Li, S.; Topper, M. J.; Tao, Y.; Zhang, H.; Jiao, X.; Xie, W. B.; Kong, X. Q.; Vaz, M. et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 2020, 579, 284–290.

[18]
Cameron, D.; Piccart-Gebhart, M. J.; Gelber, R. D.; Procter, M.; Goldhirsch, A.; de Azambuja, E.; Castro, G. Jr.; Untch, M.; Smith, I.; Gianni, L. et al. 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: Final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 2017 , 389, 1195–1205.
[19]

Kramar, A.; Bachelot, T.; Madrange, N.; Pierga, J. Y.; Kerbrat, P.; Espié, M.; Fumoleau, P.; Pauporté, I.; Khayat, D.; Romieu, G. et al. Trastuzumab duration effects within patient prognostic subgroups in the PHARE trial. Ann. Oncol. 2014, 25, 1563–1570.

[20]

Masuda, T.; Noda, M.; Kogawa, T.; Kitagawa, D.; Hayashi, N.; Jomori, T.; Nakanishi, Y.; Nakayama, K. I.; Ohno, S.; Mimori, K. Phase I dose-escalation trial to repurpose propagermanium, an oral CCL2 inhibitor, in patients with breast cancer. Cancer Sci. 2020, 111, 924–931.

[21]

Coleman, R.; Finkelstein, D. M.; Barrios, C.; Martin, M.; Iwata, H.; Hegg, R.; Glaspy, J.; Perianez, A. M.; Tonkin, K.; Deleu, I. et al. Adjuvant denosumab in early breast cancer (D-CARE): An international, multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2020, 21, 60–72.

[22]

Gnant, M.; Pfeiler, G.; Steger, G. G.; Egle, D.; Greil, R.; Fitzal, F.; Wette, V.; Balic, M.; Haslbauer, F.; Melbinger-Zeinitzer, E. et al. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): Disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 339–351.

[23]

Nywening, T. M.; Wang-Gillam, A.; Sanford, D. E.; Belt, B. A.; Panni, R. Z.; Cusworth, B. M.; Toriola, A. T.; Nieman, R. K.; Worley, L. A.; Yano, M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016, 17, 651–662.

[24]

Lum, L. G.; Thakur, A.; Choi, M.; Deol, A.; Kondadasula, V.; Schalk, D.; Fields, K.; Dufrense, M.; Philip, P.; Dyson, G. et al. Clinical and immune responses to anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR BATs) in pancreatic cancer patients. Oncoimmunology 2020, 9, 1773201.

[25]

Dore, D. D.; Lapane, K. L.; Trivedi, A. N.; Mor, V.; Weinstock, M. A. Association between statin use and risk for keratinocyte carcinoma in the veterans affairs topical tretinoin chemoprevention trial. Ann. Intern. Med. 2009, 150, 9–18.

[26]

Loffler, M. W.; Gori, S.; Izzo, F.; Mayer-Mokler, A.; Ascierto, P. A.; Konigsrainer, A.; Ma, Y. T.; Sangro, B.; Francque, S.; Vonghia, L. et al. Phase I/II multicenter trial of a novel therapeutic cancer vaccine, hepavac-101, for hepatocellular carcinoma. Clin. Cancer Res. 2022, 28, 2555–2566.

[27]

Maughan, B. L.; Pal, S. K.; Gill, D.; Boucher, K.; Martin, C.; Salgia, M.; Nussenzveig, R.; Liu, T.; Hawks, J. L.; Batten, J. et al. Modulation of premetastatic niche by the vascular endothelial growth factor receptor tyrosine kinase inhibitor pazopanib in localized high-risk prostate cancer followed by radical prostatectomy: A phase II randomized trial. Oncologist 2018, 23, 1413–e151.

[28]

Ridker, P. M.; MacFadyen, J. G.; Thuren, T.; Everett, B. M.; Libby, P.; Glynn, R. J.; CANTOS Trial Group. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: Exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 1833–1842.

[29]

Wang, H.; Pan, J. J.; Barsky, L.; Jacob, J. C.; Zheng, Y.; Gao, C.; Wang, S.; Zhu, W. W.; Sun, H. T.; Lu, L. et al. Characteristics of pre-metastatic niche: The landscape of molecular and cellular pathways. Mol. Biomed. 2021, 2, 3.

[30]

Peinado, H.; Lavotshkin, S.; Lyden, D. The secreted factors responsible for pre-metastatic niche formation: Old sayings and new thoughts. Semin. Cancer Biol. 2011, 21, 139–146.

[31]
Deng, J. H.; Liu, Y.; Lee, H.; Herrmann, A.; Zhang, W.; Zhang, C. Y.; Shen, S. D.; Priceman, S. J.; Kujawski, M.; Pal, S. K. et al. S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 2012 , 21, 642–654.
[32]

Kitamura, T.; Qian, B. Z.; Pollard, J. W. Immune cell promotion of metastasis. Nat. Rev. Immunol. 2015, 15, 73–86.

[33]

Fremder, E.; Munster, M.; Aharon, A.; Miller, V.; Gingis-Velitski, S.; Voloshin, T.; Alishekevitz, D.; Bril, R.; Scherer, S. J.; Loven, D. et al. Tumor-derived microparticles induce bone marrow-derived cell mobilization and tumor homing: A process regulated by osteopontin. Int. J. Cancer 2014, 135, 270–281.

[34]

Garner, H.; de Visser, K. E. Immune crosstalk in cancer progression and metastatic spread: A complex conversation. Nat. Rev. Immunol. 2020, 20, 483–497.

[35]

Xie, F.; Zhou, X. X.; Fang, M. Y.; Li, H. Y.; Su, P.; Tu, Y. F.; Zhang, L.; Zhou, F. F. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv. Sci. 2019, 6, 1901779.

[36]
Hiratsuka, S.; Nakamura, K.; Iwai, S.; Murakami, M.; Itoh, T.; Kijima, H.; Shipley, J. M.; Senior, R. M.; Shibuya, M. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002 , 2, 289–300.
[37]

Kenific, C. M.; Nogués, L.; Lyden, D. Pre-metastatic niche formation has taken its TOLL. Cancer Cell 2016, 30, 189–191.

[38]

Zhang, S. X.; Liao, X. Y.; Chen, S. W.; Qian, W. Y.; Li, M.; Xu, Y. R.; Yang, M. S. Z.; Li, X. C.; Mo, S.; Tang, M. L. et al. Large oncosome-loaded VAPA promotes bone-tropic metastasis of hepatocellular carcinoma via formation of osteoclastic pre-metastatic niche. Adv. Sci. 2022, 9, 2201974.

[39]

Fu, C. H.; Liu, T. L.; Li, L. L.; Liu, H. Y.; Chen, D.; Tang, F. Q. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 2013, 34, 2565–2575.

[40]

Souris, J. S.; Lee, C. H.; Cheng, S. H.; Chen, C. T.; Yang, C. S.; Ho, J. A. A.; Mou, C. Y.; Lo, L. W. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 2010, 31, 5564–5574.

[41]

Xie, X. D.; Nie, H. F.; Zhou, Y.; Lian, S.; Mei, H.; Lu, Y. S.; Dong, H. Y.; Li, F. Q.; Li, T.; Li, B. F. et al. Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles. Nat. Commun. 2019, 10, 5476.

[42]

Li, S. Y.; Wang, Q.; Shen, Y. Q.; Hassan, M.; Shen, J. Z.; Jiang, W.; Su, Y. T.; Chen, J.; Bai, L.; Zhou, W. C. et al. Pseudoneutrophil cytokine sponges disrupt myeloid expansion and tumor trafficking to improve cancer immunotherapy. Nano Lett. 2020, 20, 242–251.

[43]
Kaplan, R. N.; Riba, R. D.; Zacharoulis, S.; Bramley, A. H.; Vincent, L.; Costa, C.; MacDonald, D. D.; Jin, D. K.; Shido, K.; Kerns, S. A. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005 , 438, 820–827.
[44]

Chafe, S. C.; Lou, Y. M.; Sceneay, J.; Vallejo, M.; Hamilton, M. J.; McDonald, P. C.; Bennewith, K. L.; Moller, A.; Dedhar, S. Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Res. 2015, 75, 996–1008.

[45]

Kaczanowska, S.; Beury, D. W.; Gopalan, V.; Tycko, A. K.; Qin, H. Y.; Clements, M. E.; Drake, J.; Nwanze, C.; Murgai, M.; Rae, Z. et al. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell 2021, 184, 2033–2052.e21.

[46]

Kowanetz, M.; Wu, X. M.; Lee, J.; Tan, M.; Hagenbeek, T.; Qu, X. P.; Yu, L. L.; Ross, J.; Korsisaari, N.; Cao, T. et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc. Natl. Acad. Sci. USA 2010, 107, 21248–21255.

[47]

Veglia, F.; Sanseviero, E.; Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 2021, 21, 485–498.

[48]

Gabrilovich, D. I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174.

[49]

Gabrilovich, D. I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 2017, 5, 3–8.

[50]

Wang, Y. G.; Ding, Y. X.; Guo, N. Z.; Wang, S. J. MDSCs: Key criminals of tumor pre-metastatic niche formation. Front. Immunol. 2019, 10, 172.

[51]

Cui, T. X.; Kryczek, I.; Zhao, L. L.; Zhao, E. D.; Kuick, R.; Roh, M. H.; Vatan, L.; Szeliga, W.; Mao, Y. J.; Thomas, D. G. et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 2013, 39, 611–621.

[52]

Zhang, Y. L.; Xu, B. Y.; Luan, B.; Zhang, Y.; Wang, X. F.; Xiong, X. R.; Shi, H. K. Tumor-derived MDSCs inhibit airway remodeling in asthmatic mice through regulating IL-10 and IL-12. Am. J. Transl. Res. 2019, 11, 4192–4202.

[53]

Xia, C. Y.; Bai, W. J.; Deng, T.; Li, T.; Zhang, L.; Lu, Z. Z.; Zhang, Z. R.; Li, M.; He, Q. Sponge-like nano-system suppresses tumor recurrence and metastasis by restraining myeloid-derived suppressor cells-mediated immunosuppression and formation of pre-metastatic niche. Acta. Biomater. 2023, 158, 708–724.

[54]

Lu, Z. Z.; Ma, L.; Mei, L.; Ren, K. B.; Li, M.; Zhang, L.; Liu, X. X.; He, Q. Micellar nanoparticles inhibit the postoperative inflammation, recurrence and pulmonary metastasis of 4T1 breast cancer by blocking NF-κB pathway and promoting MDSCs depletion. Int. J. Pharm. 2022, 628, 122303.

[55]

Nan, J.; Xing, Y. F.; Hu, B.; Tang, J. X.; Dong, H. M.; He, Y. M.; Ruan, D. Y.; Ye, Q. J.; Cai, J. R.; Ma, X. K. et al. Endoplasmic reticulum stress induced LOX-1+ CD15+ polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma. Immunology 2018, 154, 144–155.

[56]

Kim, H. R.; Park, S. M.; Seo, S. U.; Jung, I.; Yoon, H. I.; Gabrilovich, D. I.; Cho, B. C.; Seong, S. Y.; Ha, S. J.; Youn, J. I. The ratio of peripheral regulatory T cells to lox-1+ polymorphonuclear myeloid-derived suppressor cells predicts the early response to anti-PD-1 therapy in patients with non-small cell lung cancer. Am. J. Respir. Crit. Care Med. 2019, 199, 243–246.

[57]

Condamine, T.; Dominguez, G. A.; Youn, J. I.; Kossenkov, A. V.; Mony, S.; Alicea-Torres, K.; Tcyganov, E.; Hashimoto, A.; Nefedova, Y.; Lin, C. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol. 2016, 1, aaf8943.

[58]

Chai, E. Q.; Zhang, L.; Li, C. Q. LOX-1+ PMN-MDSC enhances immune suppression which promotes glioblastoma multiforme progression. Cancer Manag. Res. 2019, 11, 7307–7315.

[59]

Melani, C.; Sangaletti, S.; Barazzetta, F. M.; Werb, Z.; Colombo, M. P. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 2007, 67, 11438–11446.

[60]

Deng, Z.; Rong, Y.; Teng, Y.; Zhuang, X.; Samykutty, A.; Mu, J.; Zhang, L.; Cao, P.; Yan, J.; Miller, D. et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene 2017, 36, 639–651.

[61]

Long, Y.; Lu, Z. Z.; Xu, S. S.; Li, M.; Wang, X. H.; Zhang, Z. R.; He, Q. Self-delivery micellar nanoparticles prevent premetastatic niche formation by interfering with the early recruitment and vascular destruction of granulocytic myeloid-derived suppressor cells. Nano Lett. 2020, 20, 2219–2229.

[62]

Han, Y.; Zhao, R. B.; Xu, F. Neutrophil-based delivery systems for nanotherapeutics. Small 2018, 14, 1801674.

[63]

Xue, J. W.; Zhao, Z. K.; Zhang, L.; Xue, L. J.; Shen, S. Y.; Wen, Y. J.; Wei, Z. Y.; Wang, L.; Kong, L. Y.; Sun, H. B. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 2017, 12, 692–700.

[64]

Cruz, M. A.; Bohinc, D.; Andraska, E. A.; Alvikas, J.; Raghunathan, S.; Masters, N. A.; van Kleef, N. D.; Bane, K. L.; Hart, K.; Medrow, K. et al. Nanomedicine platform for targeting activated neutrophils and neutrophil-platelet complexes using an α1-antitrypsin-derived peptide motif. Nat. Nanotechnol. 2022, 17, 1004–1014.

[65]

Xu, Y. W.; Wang, X. M.; Liu, L. J.; Wang, J.; Wu, J. B.; Sun, C. G. Role of macrophages in tumor progression and therapy (review). Int. J. Oncol. 2022, 60, 57.

[66]

Safarzadeh, E.; Orangi, M.; Mohammadi, H.; Babaie, F.; Baradaran, B. Myeloid-derived suppressor cells: Important contributors to tumor progression and metastasis. J. Cell. Physiol. 2018, 233, 3024–3036.

[67]

Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016, 37, 208–220.

[68]

Jaufmann, J.; Lelis, F. J. N.; Teschner, A. C.; Fromm, K.; Rieber, N.; Hartl, D.; Beer-Hammer, S. Human monocytic myeloid-derived suppressor cells impair B-cell phenotype and function in vitro. Eur. J. Immunol. 2020, 50, 33–47.

[69]

Yang, Y. S.; Guo, J. F.; Huang, L. Tackling TAMs for cancer immunotherapy: It's nano time. Trends Pharmacol. Sci. 2020, 41, 701–714.

[70]

Dalerba, P.; Dylla, S. J.; Park, I. K.; Liu, R.; Wang, X. H.; Cho, R. W.; Hoey, T.; Gurney, A.; Huang, E. H.; Simeone, D. M. et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 10158–10163.

[71]

Collins, A. T.; Berry, P. A.; Hyde, C.; Stower, M. J.; Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005, 65, 10946–10951.

[72]

Iliopoulos, D.; Hirsch, H. A.; Wang, G. N.; Struhl, K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 1397–1402.

[73]

Yang, J.; Liao, D. B.; Chen, C.; Liu, Y.; Chuang, T. H.; Xiang, R.; Markowitz, D.; Reisfeld, R. A.; Luo, Y. P. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells 2013, 31, 248–258.

[74]

Mou, W. J.; Xu, Y. X.; Ye, Y. J.; Chen, S.; Li, X. F.; Gong, K. Z.; Liu, Y. H.; Chen, Y. N.; Li, X. R.; Tian, Y. P. et al. Expression of Sox2 in breast cancer cells promotes the recruitment of M2 macrophages to tumor microenvironment. Cancer Lett. 2015, 358, 115–123.

[75]

Guo, C. L.; Chen, Y. N.; Gao, W. J.; Chang, A. T.; Ye, Y. J.; Shen, W. Z.; Luo, Y. P.; Yang, S. Y.; Sun, P. Q.; Xiang, R. et al. Liposomal nanoparticles carrying anti-IL6R antibody to the tumour microenvironment inhibit metastasis in two molecular subtypes of breast cancer mouse models. Theranostics 2017, 7, 775–788.

[76]

Zhang, H. J.; Zhang, X. G.; Ren, Y. P.; Cao, F.; Hou, L.; Zhang, Z. Z. An in situ microenvironmental nano-regulator to inhibit the proliferation and metastasis of 4T1 tumor. Theranostics 2019, 9, 3580–3594.

[77]

Wang, Y. P.; Yu, J.; Luo, Z. J.; Shi, Q. K.; Liu, G. L.; Wu, F.; Wang, Z. Z.; Huang, Y. B.; Zhou, D. F. Engineering endogenous tumor-associated macrophage-targeted biomimetic nano-RBC to reprogram tumor immunosuppressive microenvironment for enhanced chemo-immunotherapy. Adv. Mater. 2021, 33, 2103497.

[78]

Tobin, R. P.; Cogswell, D. T.; Cates, V. M.; Davis, D. M.; Borgers, J. S. W.; Van Gulick, R. J.; Katsnelson, E.; Couts, K. L.; Jordan, K. R.; Gao, D. X. et al. Targeting MDSC differentiation using ATRA: A phase I/II clinical trial combining pembrolizumab and all-trans retinoic acid for metastatic melanoma. Clin. Cancer Res. 2023, 29, 1209–1219.

[79]

Kumar, V.; Donthireddy, L.; Marvel, D.; Condamine, T.; Wang, F.; Lavilla-Alonso, S.; Hashimoto, A.; Vonteddu, P.; Behera, R.; Goins, M. A. et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 2017, 32, 654–668.e5.

[80]

Lavie, D.; Ben-Shmuel, A.; Erez, N.; Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat. Cancer 2022, 3, 793–807.

[81]

Gui, J.; Zahedi, F.; Ortiz, A.; Cho, C.; Katlinski, K. V.; Alicea-Torres, K.; Li, J. Y.; Todd, L.; Zhang, H. R.; Beiting, D. P. et al. Activation of p38α stress-activated protein kinase drives the formation of the pre-metastatic niche in the lungs. Nat. Cancer 2020, 1, 603–619.

[82]

Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D. G.; Egeblad, M.; Evans, R. M.; Fearon, D.; Greten, F. R.; Hingorani, S. R.; Hunter, T. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186.

[83]

Tampe, B.; Zeisberg, M. Contribution of genetics and epigenetics to progression of kidney fibrosis. Nephrol. Dial. Transplant. 2014, 29, iv72–iv79.

[84]

Zeisberg, E. M.; Zeisberg, M. The role of promoter hypermethylation in fibroblast activation and fibrogenesis. J. Pathol. 2013, 229, 264–273.

[85]

Kalluri, R.; Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 2006, 6, 392–401.

[86]

Ruan, K.; Bao, S. D.; Ouyang, G. L. The multifaceted role of periostin in tumorigenesis. Cell. Mol. Life Sci. 2009, 66, 2219–2230.

[87]

Ronnov-Jessen, L.; Petersen, O. W.; Bissell, M. J. Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiol. Rev. 1996, 76, 69–125.

[88]

Goetz, J. G.; Minguet, S.; Navarro-Lérida, I.; Lazcano, J. J.; Samaniego, R.; Calvo, E.; Tello, M.; Osteso-Ibanez, T.; Pellinen, T.; Echarri, A. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 2011, 146, 148–163.

[89]

Tomasek, J. J.; Gabbiani, G.; Hinz, B.; Chaponnier, C.; Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 2002, 3, 349–363.

[90]

Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598.

[91]

Gong, Z.; Li, Q.; Shi, J. Y.; Wei, J.; Li, P. S.; Chang, C. H.; Shultz, L. D.; Ren, G. W. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment. Immunity 2022, 55, 1483–1500.e9.

[92]
Roife, D.; Fleming, J. B.; Gomer, R. H. Fibrocytes in the tumor microenvironment. In Tumor Microenvironment: Hematopoietic Cells – Part A. Birbrair, A., Ed.; Springer: Cham, 2020; pp 79–85.
[93]

Zhou, Y.; Ke, P.; Bao, X. Y.; Wu, H. H.; Xia, Y. Y.; Zhang, Z. T.; Zhong, H. Q.; Dai, Q.; Wu, L. J.; Wang, T. T. et al. Peptide nano-blanket impedes fibroblasts activation and subsequent formation of pre-metastatic niche. Nat. Commun. 2022, 13, 2906.

[94]

Jin, J. F.; Krishnamachary, B.; Barnett, J. D.; Chatterjee, S.; Chang, D.; Mironchik, Y.; Wildes, F.; Jaffee, E. M.; Nimmagadda, S.; Bhujwalla, Z. M. Human cancer cell membrane-coated biomimetic nanoparticles reduce fibroblast-mediated invasion and metastasis and induce T-cells. ACS Appl. Mater. Interfaces 2019, 11, 7850–7861.

[95]

Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67.

[96]

Li, J. J.; Ge, Z. S.; Toh, K.; Liu, X. Y.; Dirisala, A.; Ke, W. D.; Wen, P. Y.; Zhou, H.; Wang, Z.; Xiao, S. Y. et al. Enzymatically transformable polymersome-based nanotherapeutics to eliminate minimal relapsable cancer. Adv. Mater. 2021, 33, 2105254.

[97]

Yachida, S.; White, C. M.; Naito, Y.; Zhong, Y.; Brosnan, J. A.; Macgregor-Das, A. M.; Morgan, R. A.; Saunders, T.; Laheru, D. A.; Herman, J. M. et al. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin. Cancer Res. 2012, 18, 6339–6347.

[98]

Zhou, Y.; Ren, H. Z.; Dai, B.; Li, J.; Shang, L. C.; Huang, J. F.; Shi, X. L. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J. Exp. Clin. Cancer Res. 2018, 37, 324.

[99]

Xie, Z. B.; Gao, Y.; Ho, C.; Li, L. Q.; Jin, C.; Wang, X. Y.; Zou, C. F.; Mao, Y. S.; Wang, X. B.; Li, Q. F. et al. Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment. Gut 2022, 71, 568–579.

[100]

Zhang, H. Y.; Deng, T.; Liu, R.; Bai, M.; Zhou, L. K.; Wang, X.; Li, S.; Wang, X. Y.; Yang, H. O.; Li, J. L. et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat. Commun. 2017, 8, 15016.

[101]

Kozono, S.; Ohuchida, K.; Eguchi, D.; Ikenaga, N.; Fujiwara, K.; Cui, L.; Mizumoto, K.; Tanaka, M. Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res. 2013, 73, 2345–2356.

[102]

Ruwanpura, S. M.; Thomas, B. J.; Bardin, P. G. Pirfenidone: Molecular mechanisms and potential clinical applications in lung disease. Am. J. Respir. Cell Mol. Biol. 2020, 62, 413–422.

[103]

Zhao, J.; Zhu, Y.; Li, Z. J.; Liang, J. W.; Zhang, Y.; Zhou, S. Q.; Zhang, Y. X.; Fan, Z. W.; Shen, Y. H.; Liu, Y. F. et al. Pirfenidone-loaded exosomes derived from pancreatic ductal adenocarcinoma cells alleviate fibrosis of premetastatic niches to inhibit liver metastasis. Biomater. Sci. 2022, 10, 6614–6626.

[104]

Hoshino, A.; Costa-Silva, B.; Shen, T. L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S. et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015, 527, 329–335.

[105]
Boye, K.; Maelandsmo, G. M. S100A4 and metastasis: A small actor playing many roles. Am. J. Pathol. 2010 , 176, 528–535.
[106]
Dahlmann, M.; Kobelt, D.; Walther, W.; Mudduluru, G.; Stein, U. S100A4 in cancer metastasis: Wnt signaling-driven interventions for metastasis restriction. Cancers 2016 , 8, 59.
[107]
Grum-Schwensen, B.; Klingelhöfer, J.; Beck, M.; Bonefeld, C. M.; Hamerlik, P.; Guldberg, P.; Grigorian, M.; Lukanidin, E.; Ambartsumian, N. S100A4-neutralizing antibody suppresses spontaneous tumor progression, pre-metastatic niche formation and alters T-cell polarization balance. BMC Cancer 2015 , 15, 44.
[108]

Zhao, L. W.; Gu, C. Y.; Gan, Y.; Shao, L. L.; Chen, H. W.; Zhu, H. Y. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J. Control. Release 2020, 318, 1–15.

[109]

Fidler, I. J. The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 2003, 3, 453–458.

[110]

Massagué, J.; Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 2016, 529, 298–306.

[111]

Wieland, E.; Rodriguez-Vita, J.; Liebler, S. S.; Mogler, C.; Moll, I.; Herberich, S. E.; Espinet, E.; Herpel, E.; Menuchin, A.; Chang-Claude, J. et al. Endothelial notch1 activity facilitates metastasis. Cancer Cell 2017, 31, 355–367.

[112]

Jiang, T. Z.; Chen, L.; Huang, Y. K.; Wang, J. H.; Xu, M. J.; Zhou, S. L.; Gu, X.; Chen, Y.; Liang, K. F.; Pei, Y. Y. et al. Metformin and docosahexaenoic acid hybrid micelles for premetastatic niche modulation and tumor metastasis suppression. Nano Lett. 2019, 19, 3548–3562.

[113]

Nguyen, D. X.; Bos, P. D.; Massagué, J. Metastasis: From dissemination to organ-specific colonization. Nat. Rev. Cancer 2009, 9, 274–284.

[114]

Szczerba, B. M.; Castro-Giner, F.; Vetter, M.; Krol, I.; Gkountela, S.; Landin, J.; Scheidmann, M. C.; Donato, C.; Scherrer, R.; Singer, J. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 2019, 566, 553–557.

[115]

Cools-Lartigue, J.; Spicer, J.; McDonald, B.; Gowing, S.; Chow, S.; Giannias, B.; Bourdeau, F.; Kubes, P.; Ferri, L. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Invest. 2013, 123, 3446–3458.

[116]

Kang, T.; Zhu, Q. Q.; Wei, D.; Feng, J. X.; Yao, J. H.; Jiang, T. Z.; Song, Q. X.; Wei, X. B.; Chen, H. Z.; Gao, X. L. et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 2017, 11, 1397–1411.

[117]

Ye, H.; Wang, K. Y.; Lu, Q.; Zhao, J.; Wang, M. L.; Kan, Q. M.; Zhang, H. T.; Wang, Y. J.; He, Z. G.; Sun, J. Nanosponges of circulating tumor-derived exosomes for breast cancer metastasis inhibition. Biomaterials 2020, 242, 119932.

[118]

Chen, S.; Yang, X. H.; Zhang, Y.; Liu, Y.; Lu, H.; Qiu, Y. F.; Cheng, L. T.; Li, C.; Wang, C. H. Inhalable porous microspheres loaded with metformin and docosahexaenoic acid suppress tumor metastasis by modulating premetastatic niche. Mol. Pharmaceutics 2021, 18, 2622–2633.

[119]

Schlesinger, M. Role of platelets and platelet receptors in cancer metastasis. J. Hematol. Oncol. 2018, 11, 125.

[120]

Leblanc, R.; Peyruchaud, O. Metastasis: New functional implications of platelets and megakaryocytes. Blood 2016, 128, 24–31.

[121]

Jechlinger, M.; Sommer, A.; Moriggl, R.; Seither, P.; Kraut, N.; Capodiecci, P.; Donovan, M.; Cordon-Cardo, C.; Beug, H.; Grunert, S. Autocrine PDGFR signaling promotes mammary cancer metastasis. J. Clin. Invest. 2006, 116, 1561–1570.

[122]

Hu, L.; Lee, M.; Campbell, W.; Perez-Soler, R.; Karpatkin, S. Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood 2004, 104, 2746–2751.

[123]

Schumacher, D.; Strilic, B.; Sivaraj, K. K.; Wettschureck, N.; Offermanns, S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 2013, 24, 130–137.

[124]

Asghar, S.; Parvaiz, F.; Manzoor, S. Multifaceted role of cancer educated platelets in survival of cancer cells. Thromb. Res. 2019, 177, 42–50.

[125]

Tao, D. L.; Tassi Yunga, S.; Williams, C. D.; McCarty, O. J. T. Aspirin and antiplatelet treatments in cancer. Blood 2021, 137, 3201–3211.

[126]

Hu, Q. Y.; Sun, W. J.; Qian, C. G.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 2015, 27, 7043–7050.

[127]

Li, S. J.; Li, L.; Lin, X.; Chen, C.; Luo, C. H.; Huang, Y. Targeted inhibition of tumor inflammation and tumor-platelet crosstalk by nanoparticle-mediated drug delivery mitigates cancer metastasis. ACS Nano 2022, 16, 50–67.

[128]

Zhang, P. F.; Xiao, Y. F.; Sun, X.; Lin, X. N.; Koo, S.; Yaremenko, A. V.; Qin, D. T.; Kong, N.; Farokhzad, O. C.; Tao, W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. Med 2023, 4, 147–167.

[129]

Dilliard, S. A.; Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 2023, 8, 282–300.

[130]

Zhou, M. L.; Luo, C. H.; Zhou, Z.; Li, L.; Huang, Y. Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade. J. Control. Release 2021, 334, 248–262.

[131]

Yu, L.; Yu, M.; Chen, W.; Sun, S. J.; Huang, W. X.; Wang, T. Q.; Peng, Z. W.; Luo, Z. W.; Fang, Y. X.; Li, Y. J. et al. In situ separable nanovaccines with stealthy bioadhesive capability for durable cancer immunotherapy. J. Am. Chem. Soc. 2023, 145, 8375–8388.

[132]

Liu, C.; Shi, Q. Q.; Huang, X. G.; Koo, S.; Kong, N.; Tao, W. mRNA-based cancer therapeutics. Nat. Rev. Cancer 2023, 23, 526–543.

[133]

Kong, N.; Zhang, R. N.; Wu, G. W.; Sui, X. B.; Wang, J. Q.; Kim, N. Y.; Blake, S.; De, D. B.; Xie, T.; Cao, Y. H. et al. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2112696119.

[134]

Tang, Z. M.; You, X. R.; Xiao, Y. F.; Chen, W.; Li, Y. J.; Huang, X. G.; Liu, H. J.; Xiao, F.; Liu, C.; Koo, S. et al. Inhaled mRNA nanoparticles dual-targeting cancer cells and macrophages in the lung for effective transfection. Proc. Natl. Acad. Sci. U.S.A. 2023, 120, e2304966120.

[135]

Bertocchi, A.; Carloni, S.; Ravenda, P. S.; Bertalot, G.; Spadoni, I.; Lo Cascio, A.; Gandini, S.; Lizier, M.; Braga, D.; Asnicar, F. et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell 2021, 39, 708–724.e11.

[136]

Murota, Y.; Jobin, C. Bacteria break barrier to promote metastasis. Cancer Cell 2021, 39, 598–600

Nano Research
Pages 5358-5373
Cite this article:
Wang J, Zhang N, Ding X, et al. Targeted nanostrategies eliminate pre-metastatic niche of cancer. Nano Research, 2024, 17(6): 5358-5373. https://doi.org/10.1007/s12274-024-6412-0
Topics:

629

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 19 September 2023
Revised: 08 December 2023
Accepted: 11 December 2023
Published: 08 February 2024
© Tsinghua University Press 2024
Return