AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cationic engineered nanodiamonds for efficient antibacterial surface with strong wear resistance

Fu-Kui Li§Wen-Bo Zhao§Yong WangWen-Tao HuangYa-Lun KuHang LiuRui GuoHui-Hui YuKai-Kai Liu( )Chong-Xin Shan( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, and School of Physics & Microelectronics, Zhengzhou University, Zhengzhou 450052, China

§ Fu-Kui Li and Wen-Bo Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

This study developed cationic engineered nanodiamonds for highly efficient antibacterial wear-resistant surface, exhibiting a 3981-fold increase in wear-resistance and 99% kill rate of adherent bacteria.

Abstract

The spread of diseases caused by bacterial adhesion and immobilization in public places constitutes a serious threat to public health. Prevention of bacteria spread by the construction of an antibacterial surface takes precedence over post-infection treatment. Herein, we demonstrate an effective antibacterial surface with strong wear resistance by constructing cationic engineered nanodiamonds (C-NDs). The C-NDs with positive surface potentials interact effectively with bacteria through electrostatic interactions, where the C-NDs act on the phospholipid bilayer and lead to bacterial membrane collapse and rupture through hydrogen bonding and residual surface oxygen-containing reactive groups. In this case, bactericidal rate of 99.99% and bacterial biofilm inhibition rate of more than 80% can be achieved with the C-NDs concentration of 1 mg/mL. In addition, the C-NDs show outstanding antibacterial stability, retaining over 87% of the antibacterial effect after stimulation by adverse environments of heat, acid, and external abrasion. Therefore, an antibacterial surface with high wear resistance obtained by integrating C-NDs with commercial plastics has been demonstrated. The antibacterial surface with a mass fraction of 1 wt.% C-NDs improved abrasion resistance by 3981 times, with 99% killing of adherent bacteria. This work provides an effective strategy for highly efficient antibacterial wear-resistant surface, showing great practical applications in public health environments.

Electronic Supplementary Material

Download File(s)
12274_2024_6417_MOESM1_ESM.pdf (1 MB)

References

[1]

Hughes, K. T.; Berg, H. C. The bacterium has landed. Science 2017, 358, 446–447.

[2]

Bjarnsholt, T.; Ciofu, O.; Molin, S.; Givskov, M.; Høiby, N. Applying insights from biofilm biology to drug development—Can a new approach be developed. Nat. Rev. Drug Discov. 2013, 12, 791–808.

[3]

Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322.

[4]

Dumas, O.; Wiley, A. S.; Quinot, C.; Varraso, R.; Zock, J. P.; Henneberger, P. K.; Speizer, F. E.; Le Moual, N.; Camargo, C. A. Occupational exposure to disinfectants and asthma control in US nurses. Eur. Respir. J. 2017, 50, 1700237.

[5]

Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling Coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690–718.

[6]

Imani, S. M.; Ladouceur, L.; Marshall, T.; Maclachlan, R.; Soleymani, L.; Didar, T. F. Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano 2020, 14, 12341–12369.

[7]

Rigo, S.; Cai, C.; Gunkel-Grabole, G.; Maurizi, L.; Zhang, X. Y.; Xu, J.; Palivan, C. G. Nanoscience-based strategies to engineer antimicrobial surfaces. Adv. Sci. 2018, 5, 1700892.

[8]

Riduan, S. N.; Zhang, Y. G. Nanostructured surfaces with multimodal antimicrobial action. Acc. Chem. Res. 2021, 54, 4508–4517.

[9]

Yang, L.; Wang, C. P.; Li, L.; Zhu, F.; Ren, X. C.; Huang, Q.; Cheng, Y. Y.; Li, Y. W. Bioinspired integration of naturally occurring molecules towards universal and smart antibacterial coatings. Adv. Funct. Mater. 2022, 32, 2108749.

[10]

Zhao, W. B.; Liu, K. K.; Wang, Y.; Li, F. K.; Guo, R.; Song, S. Y.; Shan, C. X. Antibacterial carbon dots: Mechanisms, design, and applications. Adv. Healthc. Mater. 2023, 12, 2300324.

[11]

Jung, S.; Cui, Y. F.; Barnes, M.; Satam, C.; Zhang, S. X.; Chowdhury, R. A.; Adumbumkulath, A.; Sahin, O.; Miller, C.; Sajadi, S. M. et al. Multifunctional bio-nanocomposite coatings for perishable fruits. Adv. Mater. 2020, 32, 1908291.

[12]

Zhao, W. B.; Du, M. R.; Liu, K. K.; Zhou, R.; Ma, R. N.; Jiao, Z.; Zhao, Q.; Shan, C. X. Hydrophilic ZnO nanoparticles@calcium alginate composite for water purification. ACS Appl. Mater. Interfaces 2020, 12, 13305–13315.

[13]

Wang, Y.; Yuan, Q.; Li, M. Q.; Tang, Y. L. Cationic conjugated microporous polymers coating for dual-modal antimicrobial inactivation with self-sterilization and reusability functions. Adv. Funct. Mater. 2023, 33, 2213440.

[14]

Yang, L.; Li, L.; Li, H. T.; Wang, T. Y.; Ren, X. C.; Cheng, Y. Y.; Li, Y. W.; Huang, Q. Layer-by-layer assembled smart antibacterial coatings via mussel-inspired polymerization and dynamic covalent chemistry. Adv. Healthc. Mater. 2022, 11, 2200112.

[15]

Qian, J.; Dong, Q.; Chun, K.; Zhu, D. Y.; Zhang, X.; Mao, Y. M.; Culver, J. N.; Tai, S.; German, J. R.; Dean, D. P. et al. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Nat. Nanotechnol. 2023, 18, 168–176.

[16]

Yang, M.; Qiu, S.; Coy, E.; Li, S.; Załęski, K.; Zhang, Y.; Pan, H.; Wang, G. NIR-responsive TiO2 biometasurfaces: Toward in situ photodynamic antibacterial therapy for biomedical implants. Adv. Mater. 2022, 34, 2106314

[17]

Pallavicini, P.; Dacarro, G.; Diaz-Fernandez, Y. A.; Taglietti, A. Coordination chemistry of surface-grafted ligands for antibacterial materials. Coord. Chem. Rev. 2014, 275, 37–53.

[18]

Chen, P. Y.; Lang, J. Y.; Zhou, Y. L.; Khlyustova, A.; Zhang, Z. Y.; Ma, X. J.; Liu, S.; Cheng, Y. F.; Yang, R. An imidazolium-based zwitterionic polymer for antiviral and antibacterial dual functional coatings. Sci. Adv. 2022, 8, eabl8812.

[19]

Xu, Q.; A, S. G.; Venet, M.; Gao, Y. S.; Zhou, D. Z.; Wang, W.; Zeng, M.; Rotella, C.; Li, X. L.; Wang, X. et al. Bacteria-resistant single chain cyclized/knotted polymer coatings. Angew. Chem., Int. Ed. 2019, 58, 10616–10620.

[20]

Wang, Y.; Liu, K. K.; Zhao, W. B.; Sun, J. L.; Chen, X. X.; Zhang, L. L.; Cao, Q.; Zhou, R.; Dong, L.; Shan, C. X. Antibacterial fabrics based on synergy of piezoelectric effect and physical interaction. Nano Today 2023, 48, 101737.

[21]

Boland, J. Diamond gets harder. Nature 2014, 510, 220–221.

[22]

Rath, P.; Kahl, O.; Ferrari, S.; Sproll, F.; Lewes-Malandrakis, G.; Brink, D.; Ilin, K.; Siegel, M.; Nebel, C.; Pernice, W. Superconducting single-photon detectors integrated with diamond nanophotonic circuits. Light: Sci. Appl. 2015, 4, e338.

[23]

Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23.

[24]

Mayerhoefer, E.; Krueger, A. Surface control of nanodiamond: From homogeneous termination to complex functional architectures for biomedical applications. Acc. Chem. Res. 2022, 55, 3594–3604.

[25]

Dong, L.; Zhu, G. H.; Zang, J. B.; Wang, Y. H. Research progress on electrochemical property and surface modifications of nanodiamond powders. Funct. Diamond 2023, 3, 2234469.

[26]

Nunes-Pereira, J.; Costa, P.; Fernandes, L.; Carvalho, E. O.; Fernandes, M. M.; Carabineiro, S. A. C.; Buijnsters, J. G.; Tubio, C. R.; Lanceros-Mendez, S. Antimicrobial and antibiofilm properties of fluorinated polymers with embedded functionalized nanodiamonds. ACS Appl. Polym. Mater. 2020, 2, 5014–5024.

[27]

Rifai, A.; Tran, N.; Reineck, P.; Elbourne, A.; Mayes, E.; Sarker, A.; Dekiwadia, C.; Ivanova, E. P.; Crawford, R. J.; Ohshima, T. et al. Engineering the interface: Nanodiamond coating on 3D-printed titanium promotes mammalian cell growth and inhibits Staphylococcus aureus colonization. ACS Appl. Mater. Interfaces 2019, 11, 24588–24597.

[28]

Shirani, A.; Hu, Q. C.; Su, Y. C.; Joy, T.; Zhu, D. H.; Berman, D. Combined tribological and bactericidal effect of nanodiamonds as a potential lubricant for artificial joints. ACS Appl. Mater. Interfaces 2019, 11, 43500–43508.

[29]

Karami, P.; Aktij, S. A.; Khorshidi, B.; Firouzjaei, M. D.; Asad, A.; Elliott, M.; Rahimpour, A.; Soares, J. B. P.; Sadrzadeh, M. Nanodiamond-decorated thin film composite membranes with antifouling and antibacterial properties. Desalination 2022, 522, 115436.

[30]

Yang, Y.; Zhang, Y. Z.; Wang, L. R.; Miao, Z. M.; Zhou, K. X.; Yang, Q. Z.; Yu, J.; Li, X. H.; Zhang, Y. F. Antibacterial property of oxygen-terminated carbon bonds. Adv. Funct. Mater. 2022, 32, 2200447.

[31]

Wehling, J.; Dringen, R.; Zare, R. N.; Maas, M.; Rezwan, K. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano 2014, 8, 6475–6483.

[32]

Zhang, K. K.; Zhao, Q.; Qin, S. R.; Fu, Y.; Liu, R. Z.; Zhi, J. F.; Shan, C. X. Nanodiamonds conjugated upconversion nanoparticles for bio-imaging and drug delivery. J. Colloid Interface Sci. 2019, 537, 316–324.

[33]

Fang, J.; Wang, H.; Bao, X. F.; Ni, Y. X.; Teng, Y.; Liu, J. S.; Sun, X. L.; Sun, Y.; Li, H. D.; Zhou, Y. M. Nanodiamond as efficient peroxidase mimic against periodontal bacterial infection. Carbon 2020, 169, 370–381.

[34]

Ginés, L.; Mandal, S.; Ashek-I-Ahmed, A. I. A.; Cheng, C. L.; Sow, M.; Williams, O. A. Positive zeta potential of nanodiamonds. Nanoscale 2017, 9, 12549–12555.

[35]

Barras, A.; Martin, F. A.; Bande, O.; Baumann, J. S.; Ghigo, J. M.; Boukherroub, R.; Beloin, C.; Siriwardena, A.; Szunerits, S. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale 2013, 5, 2307–2316.

[36]

Li, J. S.; Sun, X. H.; Dai, J. J.; Yang, J. M.; Li, L.; Zhang, Z. B.; Guo, J. D.; Bai, S. M.; Zheng, Y. Q.; Shi, X. N. Biomimetic multifunctional hybrid sponge via enzymatic cross-linking to accelerate infected burn wound healing. Int. J. Biol. Macromol. 2023, 225, 90–102.

[37]

Guo, C.; Zhang, J.; Feng, X. J.; Du, Z. G.; Jiang, Y. Z.; Shi, Y. D.; Yang, G. H.; Tan, L. Polyhexamethylene biguanide chemically modified cotton with desirable hemostatic, inflammation-reducing, intrinsic antibacterial property for infected wound healing. Chin. Chem. Lett. 2022, 33, 2975–2981.

[38]

Zhao, W. B.; Wang, R. T.; Liu, K. K.; Du, M. R.; Wang, Y.; Wang, Y. Q.; Zhou, R.; Liang, Y. C.; Ma, R. N.; Sui, L. Z. et al. Near-infrared carbon nanodots for effective identification and inactivation of Gram-positive bacteria. Nano Res. 2022, 15, 1699–1708.

[39]

Hou, Z. S.; Wang, Z. Z.; Wang, P. W.; Chen, F.; Luo, X. L. Near-infrared light-triggered mild-temperature photothermal effect of nanodiamond with functional groups. Diamond Relat. Mater. 2022, 123, 108831.

[40]

Han, J. F.; Lou, Q.; Ding, Z. Z.; Zheng, G. S.; Ni, Q. C.; Song, R. W.; Liu, K. K.; Zang, J. H.; Dong, L.; Shen, C. L. et al. Chemiluminescent carbon nanodots for dynamic and guided antibacteria. Light: Sci. Appl. 2023, 12, 104.

[41]

Ryu, T. K.; Baek, S. W.; Kang, R. H.; Choi, S. W. Selective photothermal tumor therapy using nanodiamond-based nanoclusters with folic acid. Adv. Funct. Mater. 2016, 26, 6428–6436.

[42]

Yun, T. H.; Ahn, G. Y.; Choi, I.; Bae, Y. J.; Hwang, K. C.; Kang, S. H.; Choi, S. W. Fabrication of nanodiamonds modified with hyaluronic acid and chlorin e6 for selective photothermal and photodynamic tumor therapy. Polym. Adv. Technol. 2020, 31, 2990–2998.

[43]

Song, S. Y.; Liu, K. K.; Cao, Q.; Mao, X.; Zhao, W. B.; Wang, Y.; Liang, Y. C.; Zang, J. H.; Lou, Q.; Dong, L. et al. Ultraviolet phosphorescent carbon nanodots. Light: Sci. Appl. 2022, 11, 146.

[44]

Pei, D. H. How do biomolecules cross the cell membrane. Acc. Chem. Res. 2022, 55, 309–318.

[45]

Flemming, H. C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633.

[46]

Chambers, J. R.; Sauer, K. Small RNAs and their role in biofilm formation. Trends Microbiol. 2013, 21, 39–49.

[47]

Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575.

[48]

Curry, J. F.; Babuska, T. F.; Furnish, T. A.; Lu, P.; Adams, D. P.; Kustas, A. B.; Nation, B. L.; Dugger, M. T.; Chandross, M.; Clark, B. G. et al. Achieving ultralow wear with stable nanocrystalline metals. Adv. Mater. 2018, 30, 1802026.

Nano Research
Pages 939-948
Cite this article:
Li F-K, Zhao W-B, Wang Y, et al. Cationic engineered nanodiamonds for efficient antibacterial surface with strong wear resistance. Nano Research, 2024, 17(3): 939-948. https://doi.org/10.1007/s12274-024-6417-8
Topics:

792

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 23 October 2023
Revised: 13 December 2023
Accepted: 14 December 2023
Published: 25 January 2024
© Tsinghua University Press 2024
Return