Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The chlorine evolution reaction (CER) is a crucial step in the production of chlorine gas and active chlorine by chlor-alkali electrolysis. Currently, the endeavor to fabricate electrodes capable of yielding high current density at minimal overpotential remains a central challenge in advancing the realm of chlorine evolution reactions. Here, we grow TiO2 and RuO2 on MXene@carbon cloth (CC) through the favorable affinity and induced deposition effect between the surface functional groups of MXene and the metal. A self-supported electrode (RuTiO2/MXene@CC) with strong binding at the electrocatalyst–support interface and weak adhesion at electrocatalyst–bubble interface is constructed. The RuTiO2/MXene@CC can reduce the electron density of RuO2 by regulating the electron redistribution at the heterogeneous interface, thus enhancing the adsorption of Cl−. RuTiO2/MXene@CC could achieve a high current density of 1000 mA·cm−2 at a small overpotential of 220 mV, superior to commercial dimensionally stable anodes (DSA). This study provides a new strategy for constructing efficient CER catalysts at high current density.
Qiu, L. S.; Zhang, F.; Qian, Y.; Han, W. W.; He, Y.; Feng, X. D.; Jin, J. X.; Gu, Y. P.; Hao, S. Y.; Zhang, X. W. Europium doped RuO2@TP enhanced chlorine evolution reaction performance by charge redistribution. Chem. Eng. J. 2023, 464, 142623.
Liu, Y. Y.; Li, C.; Tan, C. H.; Pei, Z. X.; Yang, T.; Zhang, S. Z.; Huang, Q. W.; Wang, Y. H.; Zhou, Z.; Liao, X. Z. et al. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts. Nat. Commun. 2023, 14, 2475.
Cheng, W. T.; Liu, Y. L.; Wu, L.; Chen, R. S.; Wang, J. X.; Chang, S.; Ma, F.; Li, Y.; Ni, H. W. RuO2/IrO2 nanoparticles decorated TiO2 nanotube arrays for improved activity towards chlorine evolution reaction. Catal. Today 2022, 400–401, 26–34
Hu, M. C.; Yu, T. Q.; Tan, K. X.; Zhou, A. C.; Luo, L.; Yin, S. B. Ultralow Ru loading RuO2-TiO2 with strong oxide-support interaction for efficient chlorine evolution and ammonia-nitrogen-elimination. Chem. Eng. J. 2023, 465, 143001.
Khatun, S.; Roy, P. Mott–Schottky heterojunction of Se/NiSe2 as bifunctional electrocatalyst for energy efficient hydrogen production via urea assisted seawater electrolysis. J. Colloid Interface Sci. 2023, 630, 844–854.
Zhu, X. L.; Wang, P.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Zhang, Q. Q.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Co3O4 nanobelt arrays assembled with ultrathin nanosheets as highly efficient and stable electrocatalysts for the chlorine evolution reaction. J. Mater. Chem. A 2018, 6, 12718–12723.
Wu, S.; Zhu, Y. C.; Yang, G. S.; Zhou, H.; Li, R. Q.; Chen, S.; Li, H. M.; Li, L. M.; Fontaine, O.; Deng, J. Take full advantage of hazardous electrochemical chlorine erosion to ultrafast produce superior NiFe oxygen evolution reaction electrode. Chem. Eng. J. 2022, 446, 136833.
Qu, H. Q.; Li, B.; Ma, Y. R.; Xiao, Z. Y.; Lv, Z. G.; Li, Z. J.; Li, W.; Wang, L. Defect-enriched hollow porous carbon nanocages enable highly efficient chlorine evolution reaction. Adv. Mater. 2023, 35, 2301359.
Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.
Liu, H. M.; Xie, R. K.; Luo, Y. T.; Cui, Z. C.; Yu, Q. M.; Gao, Z. Q.; Zhang, Z. Y.; Yang, F. N.; Kang, X.; Ge, S. Y. et al. Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA·cm−2. Nat. Commun. 2022, 13, 6382.
Wang, S.; Zhao, R.; Zheng, T.; Fang, Y.; Wang, W. J.; Xue, W. D. Metal-organic framework-derived self-supporting metal boride for efficient electrocatalytic oxygen evolution reaction. J. Colloid Interface Sci. 2022, 618, 34–43.
Zhu, C. R.; Wang, A. L.; Xiao, W.; Chao, D. L.; Zhang, X.; Tiep, N. H.; Chen, S.; Kang, J.; Wang, X.; Ding, J. et al. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 2018, 30, 1705516
Yang, Y. M.; Ji, Y. J.; Li, G. Y.; Li, Y. Y.; Jia, B. H.; Yan, J. Q.; Ma, T. Y.; Liu, S. Z. IrO x @In2O3 heterojunction from individually crystallized oxides for weak-light-promoted electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2021, 60, 26790–26797.
Qian, X.; Wei, Y. J.; Sun, M. J.; Han, Y.; Zhang, X. L.; Tian, J.; Shao, M. H. Heterostructuring 2D TiO2 nanosheets in situ grown on Ti3C2T x MXene to improve the electrocatalytic nitrogen reduction. Chin. J. Catal. 2022, 43, 1937–1944.
Li, W. X.; Sun, Z. L.; Ge, R. Y.; Li, J. C.; Li, Y. R.; Cairney, J. M.; Zheng, R. K.; Li, Y.; Li, S. A.; Li, Q. et al. Nanoarchitectonics of La-doped Ni3S2/MoS2 hetetostructural electrocatalysts for water electrolysis. Small Struct. 2023, 4, 2300175.
Ren, X.; Shi, J. Y.; Duan, R. H.; Di, J.; Xue, C.; Luo, X.; Liu, Q.; Xia, M. Y.; Lin, B.; Tang, W. Construction of high-efficiency CoS@Nb2O5 heterojunctions accelerating charge transfer for boosting photocatalytic hydrogen evolution. Chin. Chem. Lett. 2022, 33, 4700–4704.
Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy 2019, 63, 103880.
Khan, U.; Nairan, A.; Gao, J. K.; Zhang, Q. C. Current progress in 2D metal-organic frameworks for electrocatalysis. Small Struct. 2023, 4, 2200109.
Wang, L.; Gong, N.; Zhou, Z.; Zhang, Q. C.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. A MOF derived hierarchically porous 3D N-CoP x /Ni2P electrode for accelerating hydrogen evolution at high current densities. Chin. J. Catal. 2022, 43, 1176–1183.
Huang, C. Y.; Xia, Z. H.; Wang, J.; Zhang, J.; Zhao, C. F.; Zou, X. L.; Mu, S. C.; Zhang, J. J.; Lu, X. G.; Fan, H. J. et al. Highly efficient and stable electrocatalyst for hydrogen evolution by molybdenum doped Ni-Co phosphide nanoneedles at high current density. Nano Res. 2023, 23, 5892–5897
Zhu, J. W.; Chi, J. Q.; Cui, T.; Guo, L. L.; Wu, S. Q.; Li, B.; Lai, J. P.; Wang, L. F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density. Appl. Catal. B: Environ. 2023, 328, 122487.
Senthil Raja, D.; Chuah, X. F.; Lu, S. Y. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 2018, 8, 1801065
Zhang, Y. S.; Liu, J. X.; Qian, K.; Jia, A. P.; Li, D.; Shi, L.; Hu, J.; Zhu, J. F.; Huang, W. X. Structure sensitivity of Au-TiO2 strong metal-support interactions. Angew. Chem., Int. Ed. 2021, 60, 12074–12081.
Hu, X. H.; Pan, J. C.; Wang, D.; Zhong, W.; Wang, H. Y.; Wang, L. Y. Quantum-chemical study on the catalytic activity of Ti n Ru m O2 (110) surfaces on chlorine evolution. Chin. Chem. Lett. 2015, 26, 595–598.
Exner, K. S.; Anton, J.; Jacob, T.; Over, H. Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. Angew. Chem., Int. Ed. 2014, 53, 11032–11035.
Karlsson, R. K. B.; Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 2016, 116, 2982–3028.
Kong, A. Q.; Peng, M.; Gu, H. Z.; Zhao, S. C.; Lv, Y.; Liu, M. H.; Sun, Y. W.; Dai, S. D.; Fu, Y.; Zhang, J. L. et al. Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting. Chem. Eng. J. 2021, 426, 131234.
Xu, Y. J.; Wang, F.; Lei, S. L.; Wei, Y.; Zhao, D.; Gao, Y. H.; Ma, X.; Li, S. J.; Chang, S. Q.; Wang, M. Q. et al. In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction. Chem. Eng. J. 2023, 452, 139392.
Bai, X.; Guan, J. Q. Applications of MXene-based single-atom catalysts. Small Struct. 2023, 4, 2200354.
Xu, T. X.; Wang, J. P.; Cong, Y.; Jiang, S.; Zhang, Q.; Zhu, H.; Li, Y. J.; Li, X. K. Ternary BiOBr/TiO2/Ti3C2T x MXene nanocomposites with heterojunction structure and improved photocatalysis performance. Chin. Chem. Lett. 2020, 31, 1022–1025.
Gou, Z. L.; Qu, H. Q.; Liu, H. F.; Ma, Y. R.; Zong, L. B.; Li, B.; Xie, C. X.; Li, Z. J.; Li, W.; Wang, L. Coupling of N-doped mesoporous carbon and N-Ti3C2 in 2D sandwiched heterostructure for enhanced oxygen electroreduction. Small 2022, 18, 2106581.
Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043.
Li, H. P.; Li, X. R.; Liang, J. J.; Chen, Y. S. Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 2019, 9, 1803987.
Xu, W.; Xie, H. J.; Cao, F. Y.; Ran, S. S.; Duan, Y. H.; Li, B.; Wang, L. Enhanced interaction between Ru nanoparticles and N, C-modified mesoporous TiO2 for efficient electrocatalytic hydrogen evolution at all pH values. J. Mater. Chem. A 2022, 10, 23751–23759.
Li, M.; Li, X. L.; Qin, G. F.; Luo, K.; Lu, J.; Li, Y. B.; Liang, G. J.; Huang, Z. D.; Zhou, J.; Hultman, L. et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 2021, 15, 1077–1085.
Wang, F.; Ma, X. D.; Zou, P. J.; Wang, G. X.; Xiong, Y.; Liu, Y.; Ren, F. Z.; Xiong, X. H. Nitrogen-doped carbon decorated TiO2/Ti3C2T x MXene composites as anode material for high-performance sodium-ion batteries. Surf. Coat. Technol. 2021, 422, 127568.
Lu, Y.; Fan, D. Q.; Chen, Z. P.; Xiao, W. P.; Cao, C. C.; Yang, X. F. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. 2020, 65, 460–466.
Arole, K.; Blivin, J. W.; Saha, S.; Holta, D. E.; Zhao, X. F.; Sarmah, A.; Cao, H. X.; Radovic, M.; Lutkenhaus, J. L.; Green, M. J. Water-dispersible Ti3C2T z MXene nanosheets by molten salt etching. iScience 2021, 24, 103403.
Sun, S. C.; Jiang, H.; Chen, Z. Y.; Chen, Q.; Ma, M. Y.; Zhen, L.; Song, B.; Xu, C. Y. Bifunctional WC-supported RuO2 nanoparticles for robust water splitting in acidic media. Angew. Chem., Int. Ed. 2022, 61, e202202519.
Du, Y. M.; Li, B.; Xu, G. R.; Wang, L. Recent advances in interface engineering strategy for highly-efficient electrocatalytic water splitting. InfoMat 2023, 5, e12377.
Zhang, Z. Q.; Wang, H. B.; Li, Y. X.; Xie, M. G.; Li, C. G.; Lu, H. Y.; Peng, Y.; Shi, Z. Confined pyrolysis synthesis of well-dispersed cobalt copper bimetallic three-dimensional N-doped carbon framework as efficient water splitting electrocatalyst. Chem. Res. Chin. Univ. 2022, 38, 750–757.
Jiang, M.; Wang, H.; Li, Y. J.; Zhang, H. C.; Zhang, G. X.; Lu, Z. Y.; Sun, X. M.; Jiang, L. Superaerophobic RuO2 - based nanostructured electrode for high-performance chlorine evolution reaction. Small 2017, 13, 1602240.
Hou, P.; Li, D.; Yang, N. L.; Wan, J. W.; Zhang, C. H.; Zhang, X. Q.; Jiang, H. Y.; Zhang, Q. H.; Gu, L.; Wang, D. Delicate control on the shell structure of hollow spheres enables tunable mass transport in water splitting. Angew. Chem., Int. Ed. 2021, 60, 6926–6931.
Zou, Y.; Kazemi, S. A.; Shi, G.; Liu, J. X.; Yang, Y. W.; Bedford, N. M.; Fan, K. C.; Xu, Y. M.; Fu, H. Q.; Dong, M. Y. et al. Ruthenium single-atom modulated Ti3C2T x MXene for efficient alkaline electrocatalytic hydrogen production. EcoMat 2023, 5, e12274.
Yin, H. J.; Dou, Y. H.; Chen, S.; Zhu, Z. J.; Liu, P. R.; Zhao, H. J. 2D electrocatalysts for converting earth-abundant simple molecules into value-added commodity chemicals: Recent progress and perspectives. Adv. Mater. 2020, 32, 1904870
Nguyen, T. D.; Scherer, G. G.; Xu, Z. J. A facile synthesis of size-controllable IrO2 and RuO2 nanoparticles for the oxygen evolution reaction. Electrocatalysis 2016, 7, 420–427.
Wang, Y. H.; Liu, Y. Y.; Wiley, D.; Zhao, S. L.; Tang, Z. Y. Recent advances in electrocatalytic chloride oxidation for chlorine gas production. J. Mater. Chem. A 2021, 9, 18974–18993.
Exner, K. S.; Anton, J.; Jacob, T.; Over, H. Full kinetics from first principles of the chlorine evolution reaction over a RuO2 (110) model electrode. Angew. Chem., Int. Ed. 2016, 55, 7501–7504.
Lim, T.; Kim, J. H.; Kim, J.; Baek, D. S.; Shin, T. J.; Jeong, H. Y.; Lee, K. S.; Exner, K. S.; Joo, S. H. General efficacy of atomically dispersed Pt catalysts for the chlorine evolution reaction: Potential-dependent switching of the kinetics and mechanism. ACS Catal. 2021, 11, 12232–12246.