AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Environment-adaptive phase-separation-porous fluorofilm for high-performance passive radiation cooling

Weiming Tang1,2,§Yong Li3,§Xue Meng1,2,§Shutao Wang1,2( )Ziguang Zhao1,2( )
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

§ Weiming Tang, Yong Li, and Xue Meng contributed equally to this work.

Show Author Information

Graphical Abstract

The fluorofilm can effectively reflect the sun by the phase-separation porous structure and the specific groups of the double-fluoro-network can emit heat to 3K space through atomspheric transmission window, resulting in the high performance of passive radiation cooling.

Abstract

Passive radiative cooling is widely recognized as an environmentally sustainable method for achieving significant cooling effects. However, the mechanical properties and environmental adaptability of current radiative cooling materials are not sufficient to maintain high cooling performance in external environments. Here we reported an environment-adaptive phase-separation-porous fluorofilm for high-performance passive radiation cooling. Compared to the homogenous fluoro-porous network with limited scattering efficiencies, we modulated the porous structure of the fluorofilm to achieve a strong emissivity of 95.2% (8–13 μm) and a high reflectivity of 97.1% (0.3–2.5 μm). The fluorofilm demonstrates a temperature drop of 10.5 °C and an average cooling power of 81 W·m−2 under a sunlight power of 770 W·m−2. The high mechanical performance and environmental adaptability of fluorofilms are also exhibited. Considering its significant radiative cooling capability and robust environmental adaptability, the fluorofilm is expected to have a promising future in radiative temperature regulation.

Electronic Supplementary Material

Download File(s)
12274_2024_6420_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Zhou, K.; Li, W.; Patel, B. B.; Tao, R.; Chang, Y. L.; Fan, S. H.; Diao, Y.; Cai, L. L. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 2021, 21, 1493–1499.

[2]

Li, P. L.; Wang, A.; Fan, J. J.; Kang, Q.; Jiang, P. K.; Bao, H.; Huang, X. Y. Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv. Funct. Mater. 2022, 32, 2109542.

[3]

Zhao, H. X.; Sun, Q. Q.; Zhou, J.; Deng, X.; Cui, J. X. Switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater. 2020, 32, 2000870.

[4]

Zhou, L.; Rada, J.; Zhang, H. F.; Song, H. M.; Mirniaharikandi, S.; Ooi, B. S.; Gan, Q. Q. Sustainable and inexpensive polydimethylsiloxane sponges for daytime radiative cooling. Adv. Sci. 2021, 8, 2102502.

[5]

Zhu, B.; Li, W.; Zhang, Q.; Li, D.; Liu, X.; Wang, Y. X.; Xu, N.; Wu, Z.; Li, J. L.; Li, X. Q. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 2021, 16, 1342–1348.

[6]

Zhao, D. L.; Aili, A.; Zhai, Y.; Lu, J. T.; Kidd, D.; Tan, G.; Yin, X. B.; Yang, R. G. Subambient cooling of water: Toward real-world applications of daytime radiative cooling. Joule 2019, 3, 111–123.

[7]

Wang, T.; Wu, Y.; Shi, L.; Hu, X. H.; Chen, M.; Wu, L. M. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 2021, 12, 365.

[8]

Yao, P. C.; Chen, Z. P.; Liu, T. J.; Liao, X. B.; Yang, Z. W.; Li, J. L.; Jiang, Y.; Xu, N.; Li, W.; Zhu, B. et al. Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 2022, 34, 2208236.

[9]

Chae, D.; Kim, M.; Jung, P. H.; Son, S.; Seo, J.; Liu, Y. T.; Lee, B. J.; Lee, H. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl. Mater. Interfaces 2020, 12, 8073–8081.

[10]

Aili, A.; Wei, Z. Y.; Chen, Y. Z.; Zhao, D. L.; Yang, R. G.; Yin, X. B. Selection of polymers with functional groups for daytime radiative cooling. Mater. Today Phys. 2019, 10, 100127.

[11]

Lei, L. Q.; Shi, S.; Wang, D.; Meng, S.; Dai, J. G.; Fu, S. H.; Hu, J. L. Recent advances in thermoregulatory clothing: Materials, mechanisms, and perspectives. ACS Nano 2023, 17, 1803–1830.

[12]

Tian, Y. P.; Liu, X. J.; Li, J. S.; Caratenuto, A.; Zhou, S. Y.; Deng, Y. C.; Xiao, G.; Minus, M. L.; Zheng, Y. Scalable, fire-retardant, and spectrally robust melamine-formaldehyde photonic bulk for efficient daytime radiative cooling. Appl. Mater. Today 2021, 24, 101103.

[13]

Zhai, Y.; Ma, Y. G.; David, S. N.; Zhao, D. L.; Lou, R. N.; Tan, G.; Yang, R. G.; Yin, X. B. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066.

[14]

Huang, M. C.; Yang, M. P.; Guo, X. J.; Xue, C. H.; Wang, H. D.; Ma, C. Q.; Bai, Z. X.; Zhou, X. J.; Wang, Z. K.; Liu, B. Y. et al. Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 2023, 137, 101144.

[15]

Wang, X.; Liu, X. H.; Li, Z. Y.; Zhang, H. W.; Yang, Z. W.; Zhou, H.; Fan, T. X. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 2020, 30, 1907562.

[16]

Meng, S.; Long, L. S.; Wu, Z. X.; Denisuk, N.; Yang, Y.; Wang, L. P.; Cao, F.; Zhu, Y. G. Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling. Sol. Energy Mater. Sol. Cells 2020, 208, 110393.

[17]

Iqbal, M. I.; Shi, S.; Kumar, G. M. S.; Hu, J. L. Evaporative/radiative electrospun membrane for personal cooling. Nano Res. 2023, 16, 2563–2571.

[18]

Huang, W. L.; Chen, Y. J.; Luo, Y.; Mandal, J.; Li, W. X.; Chen, M. J.; Tsai, C. C.; Shan, Z. Q.; Yu, N. F.; Yang, Y. Scalable aqueous processing-based passive daytime radiative cooling coatings. Adv. Funct. Mater. 2021, 31, 2010334.

[19]

Li, D.; Liu, X.; Li, W.; Lin, Z. H.; Zhu, B.; Li, Z. Z.; Li, J. L.; Li, B.; Fan, S. H.; Xie, J. W. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 2021, 16, 153–158.

[20]

Jing, W. L.; Zhang, S.; Zhang, W.; Chen, Z.; Zhang, C. Y.; Wu, D. X.; Gao, Y. F.; Zhu, H. T. Scalable and flexible electrospun film for daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 2021, 13, 29558–29566.

[21]

Li, T.; Zhai, Y.; He, S. M.; Gan, W. T.; Wei, Z. Y.; Heidarinejad, M.; Dalgo, D.; Mi, R. Y.; Zhao, X. P.; Song, J. W. et al. A radiative cooling structural material. Science 2019, 364, 760–763.

[22]

Li, J. L.; Liang, Y.; Li, W.; Xu, N.; Zhu, B.; Wu, Z.; Wang, X. Y.; Fan, S. H.; Wang, M. H.; Zhu, J. Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 2022, 8, eabj9756.

[23]

Yang, M.; Zhong, H. M.; Li, T.; Wu, B. Y.; Wang, Z. K.; Sun, D. Z. Phase change material enhanced radiative cooler for temperature-adaptive thermal regulation. ACS Nano 2023, 17, 1693–1700.

[24]

Huang, Z. F.; Ruan, X. L. Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 2017, 104, 890–896.

[25]

Lei, L. Q.; Wang, D.; Shi, S.; Yang, J. Q.; Su, J.; Wang, C.; Si, Y. F.; Hu, J. L. Toward low-emissivity passive heating: A supramolecular-enhanced membrane with warmth retention. Mater. Horiz. 2023, 10, 4407–4414.

[26]

Ma, H. C.; Yao, K. Q.; Dou, S. L.; Xiao, M.; Dai, M. G.; Wang, L.; Zhao, H. P.; Zhao, J. P.; Li, Y.; Zhan, Y. H. Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling. Sol. Energy Mater. Sol. Cells 2020, 212, 110584.

[27]

Trosseille, J.; Mongruel, A.; Royon, L.; Beysens, D. Radiative cooling for dew condensation. Int. J. Heat Mass Transf. 2021, 172, 121160.

[28]

Xi, W.; Liu, Y. D.; Zhao, W. X.; Hu, R.; Luo, X. B. Colored radiative cooling: How to balance color display and radiative cooling performance. Int. J. Therm. Sci. 2021, 170, 107172.

[29]

Mandal, J.; Fu, Y. K.; Overvig, A. C.; Jia, M. X.; Sun, K. R.; Shi, N. N.; Zhou, H.; Xiao, X. H.; Yu, N. F.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319.

[30]

Weng, Y. Z. W.; Zhang, W. F.; Jiang, Y.; Zhao, W. Y.; Deng, Y. Effective daytime radiative cooling via a template method based PDMS sponge emitter with synergistic thermo-optical activity. Sol. Energy Mater. Sol. Cells 2021, 230, 111205.

[31]

Xue, X.; Qiu, M.; Li, Y. W.; Zhang, Q. M.; Li, S. Q.; Yang, Z.; Feng, C.; Zhang, W. D.; Dai, J. G.; Lei, D. Y. et al. Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 2020, 32, 1906751.

[32]

Zhang, H. W.; Ly, K. C. S.; Liu, X. H.; Chen, Z. H.; Yan, M.; Wu, Z. L.; Wang, X.; Zheng, Y. B.; Zhou, H.; Fan, T. X. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. USA 2020, 117, 14657–14666.

[33]

Yang, Z. B.; Zhang, J. Bioinspired radiative cooling structure with randomly stacked fibers for efficient all-day passive cooling. ACS Appl. Mater. Interfaces 2021, 13, 43387–43395.

[34]

Hippalgaonkar, K. All-weather thermal regulation coatings. Joule 2022, 6, 286–288.

[35]

Liu, J.; Zhou, Z.; Zhang, J.; Feng, W.; Zuo, J. Advances and challenges in commercializing radiative cooling. Mater. Today Phys. 2019, 11, 100161.

Nano Research
Pages 5636-5644
Cite this article:
Tang W, Li Y, Meng X, et al. Environment-adaptive phase-separation-porous fluorofilm for high-performance passive radiation cooling. Nano Research, 2024, 17(6): 5636-5644. https://doi.org/10.1007/s12274-024-6420-0
Topics:

759

Views

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 23 October 2023
Revised: 01 December 2023
Accepted: 16 December 2023
Published: 24 January 2024
© Tsinghua University Press 2024
Return