AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Designing multi-heterogeneous interfaces of Ni-MoS2@NiS2@Ni3S2 hybrid for hydrogen evolution

Haoxuan Yu1,§Junan Pan1,§Yuxin Zhang1Longlu Wang1( )Huachao Ji1Keyu Xu1Ting Zhi1( )Zechao Zhuang2( )
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
Department of Chemical Engineering, Columbia University, New York, NY 10027, USA

§ Haoxuan Yu and Junan Pan contributed equally to this work.

Show Author Information

Graphical Abstract

Ni-MoS2@NiS2@Ni3S2 hybrid with multi-heterogeneous interfaces benefits to improve water dissociation and electron transfer efficiency, thus enhancing the hydrogen evolution reaction capacity.

Abstract

The transition metal chalcogenides represented by MoS2 are the ideal choice for non-precious metal-based hydrogen evolution catalysts. However, whether in acidic or alkaline environments, the catalytic activity of pure MoS2 is still difficult to compete with Pt. Recent studies have shown that the electronic structure of materials can be adjusted by constructing lattice-matched heterojunctions, thus optimizing the adsorption free energy of intermediates in the catalytic hydrogen production process of materials, so as to effectively improve the electrocatalytic hydrogen production activity of catalysts. However, it is still a great challenge to prepare heterojunctions with lattice-matched structures as efficient electrocatalytic hydrogen production catalysts. Herein, we developed a one-step hydrothermal method to construct Ni-MoS2@NiS2@Ni3S2 (Ni-MoS2 on behalf of Ni doping MoS2) electrocatalyst with multiple heterogeneous interfaces which possesses rich catalytic reaction sites. The Ni-MoS2@NiS2@Ni3S2 electrocatalyst produced an extremely low overpotential of 69.4 mV with 10 mA·cm−2 current density for hydrogen evolution reaction (HER) in 1.0 M KOH. This work provides valuable enlightenment for exploring the mechanism of HER enhancement to optimize the surface electronic structure of MoS2, and provides an effective idea for constructing rare metal catalysts in HER and other fields.

Electronic Supplementary Material

Download File(s)
12274_2024_6430_MOESM1_ESM.pdf (859.5 KB)

References

[1]

Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.

[2]

Gao, J.; Kim, Y. D.; Liang, L. B.; Idrobo, J. C.; Chow, P.; Tan, J. W.; Li, B. C.; Li, L.; Sumpter, B. G.; Lu, T. M. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735–9743.

[3]

Han, A.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

[4]

Lang, C. G.; Jiang, W. B.; Yang, C. J.; Zhong, H.; Chen, P. R.; Wu, Q. L.; Yan, X. C.; Dong, C. L.; Lin, Y.; Ouyang, L. Z. et al. Facile and scalable mechanochemical synthesis of defective MoS2 with Ru single atoms toward high-current-density hydrogen evolution. Small 2023, 19, 2300807.

[5]

Li, S. S.; Hong, J. H.; Gao, B.; Lin, Y. C.; Lim, H. E.; Lu, X. Y.; Wu, J.; Liu, S.; Tateyama, Y.; Sakuma, Y. et al. Tunable doping of rhenium and vanadium into transition metal dichalcogenides for two-dimensional electronics. Adv. Sci. 2021, 8, 2004438.

[6]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[7]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[8]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[9]

Huang, C. Q.; Yu, L.; Zhang, W.; Xiao, Q.; Zhou, J. Q.; Zhang, Y. L.; An, P. F.; Zhang, J.; Yu, Y. N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Appl. Catal. B: Environ. 2020, 276, 119137.

[10]

Kuang, P. Y.; Tong, T.; Fan, K.; Yu, J. G. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017, 7, 6179–6187

[11]

Li, W. X.; Sun, Z. L.; Ge, R. Y.; Li, J. C.; Li, Y. R.; Cairney, J. M.; Zheng, R. K.; Li, Y.; Li, S. A.; Li, Q. et al. Nanoarchitectonics of La-doped Ni3S2/MoS2 hetetostructural electrocatalysts for water electrolysis. Small Struct. 2023, 4, 2300175.

[12]

Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B: Environ. 2019, 247, 107–114.

[13]

Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Sun, L. C.; Hou, J. G. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462.

[14]

Zhang, L. Y.; Zheng, Y. J.; Wang, J. C.; Geng, Y.; Zhang, B.; He, J. J.; Xue, J. M.; Frauenheim, T.; Li, M. Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with Co-doping for efficient alkaline hydrogen evolution by boosting volmer reaction. Small 2021, 17, 2006730.

[15]

Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem. 2022, 134, e202203522.

[16]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[17]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[18]

Son, E.; Lee, S.; Seo, J.; Kim, U.; Kim, S. H.; Baik, J. M.; Han, Y. K.; Park, H. Engineering the local atomic configuration in 2H TMDs for efficient electrocatalytic hydrogen evolution. ACS Nano 2023, 17, 10817–10826.

[19]

Tang, L.; Xu, R. Z.; Tan, J. Y.; Luo, Y. T.; Zou, J. Y.; Zhang, Z. T.; Zhang, R. J.; Zhao, Y.; Lin, J. H.; Zou, X. L. et al. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb-doping. Adv. Funct. Mater. 2020, 31, 2006941.

[20]

Zhang, T. Y.; Fujisawa, K.; Zhang, F.; Liu, M. Z.; Lucking, M. C.; Gontijo, R. N.; Lei, Y.; Liu, H.; Crust, K.; Granzier-Nakajima, T. et al. Universal in situ substitutional doping of transition metal dichalcogenides by liquid-phase precursor-assisted synthesis. ACS Nano 2020, 14, 4326–4335.

[21]

Zhang, T. Y.; Liu, M. Z.; Fujisawa, K.; Lucking, M.; Beach, K.; Zhang, F.; Shanmugasundaram, M.; Krayev, A.; Murray, W.; Lei, Y. et al. Spatial control of substitutional dopants in hexagonal monolayer WS2: The effect of edge termination. Small 2023, 19, 2205800.

[22]

Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

[23]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[24]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[25]

Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

[26]

Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

[27]

Zheng, J. X.; Liu, X.; Zheng, Y. G.; Gandi, A. N.; Kuai, X. X.; Wang, Z. C.; Zhu, Y. P.; Zhuang, Z. C.; Liang, H. F. Ag x Zn y protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett. 2023, 23, 6156–6163.

[28]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[29]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[30]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[31]

Liu, M. Q.; Wang, J. A.; Klysubun, W.; Wang, G. G.; Sattayaporn, S.; Li, F.; Cai, Y. W.; Zhang, F. C.; Yu, J.; Yang, Y. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 2021, 12, 5260.

[32]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[33]

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

[34]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[35]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[36]

Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

[37]

Yin, W. N.; Cai, Y. T.; Xie, L. B.; Huang, H.; Zhu, E. C.; Pan, J. A.; Bu, J. Q.; Chen, H.; Yuan, Y.; Zhuang, Z. C. et al. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res. 2023, 16, 4381–4398.

[38]

Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. 2016, 128, 6814–6819.

[39]

Yang, Y.; Yao, H. Q.; Yu, Z. H.; Islam, S. M.; He, H. Y.; Yuan, M. W.; Yue, Y. H.; Xu, K.; Hao, W. C.; Sun, G. B. et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 2019, 141, 10417–10430.

[40]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem. 2021, 133, 19233–19239.

[41]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[42]

Chang, C.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhuang, Z. C.; Liu, S. J.; Li, J. M.; Liu, X.; Zhao, Q. Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 2022, 15, 8613–8635.

[43]

Li, J. W.; Yin, W. N.; Pan, J. A.; Zhang, Y. B.; Wang, F. S.; Wang, L. L.; Zhao, Q. External field assisted hydrogen evolution reaction. Nano Res. 2023, 16, 8638–8654.

[44]

Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T'-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

[45]
Tu, Y.; Xie, L. B.; Zhang, M. Y.; Liu, S. J.; Luo, Z. Z.; Wang, L. L.; Zhao, Q. Recent advances on liquid intercalation and exfoliation of transition metal dichalcogenides: From fundamentals to applications. Nano Res., in press, https://doi.org/10.1007/s12274-023-5946-x.
[46]

Huang, Y. C.; Sun, Y. H.; Zheng, X. L.; Aoki, T.; Pattengale, B.; Huang, J. E.; He, X.; Bian, W.; Younan, S.; Williams, N. et al. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 2019, 10, 982.

[47]

Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coordin. Chem. Rev. 2019, 378, 395–414.

[48]

Hercule, K. M.; Wei, Q. L.; Khan, A. M.; Zhao, Y. L.; Tian, X. C.; Mai, L. Q. Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability. Nano Lett. 2013, 13, 5685–5691.

[49]

Sun, Y. M.; Hu, X. L.; Yu, J. C.; Li, Q.; Luo, W.; Yuan, L. X.; Zhang, W. X.; Huang, Y. H. Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2870–2877.

[50]

Yu, M. H.; Cheng, X. Y.; Zeng, Y. X.; Wang, Z. L.; Tong, Y. X.; Lu, X. H.; Yang, S. H. Dual-doped molybdenum trioxide nanowires: A bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew. Chem., Int. Ed. 2016, 55, 6762–6766.

[51]

Zhang, Y.; Hu, L.; Zhang, Y. C.; Wang, X. Z.; Wang, H. G. Snowflake-Like Cu2S/MoS2/Pt heterostructure with near infrared photothermal-enhanced electrocatalytic and photoelectrocatalytic hydrogen production. Appl. Catal. B: Environ. 2022, 315, 121540.

[52]

Ge, T.; Jiang, Z. K.; Shen, L.; Li, J.; Lu, Z. Q.; Zhang, Y. C.; Wang, F. Synthesis and application of Fe3O4/FeWO4 composite as an efficient and magnetically recoverable visible light-driven photocatalyst for the reduction of Cr(VI). Sep. Purif. Technol. 2021, 263, 118401.

[53]

Wang, J. H.; Sun, M. Y. Z.; Liu, C. L.; Ye, Y. C.; Chen, M. S.; Zhao, Z. M.; Zhang, Y. C.; Wu, X. H.; Wang, K. W.; Zhou, Y. T. Customized microenvironments spontaneously facilitate coupled engineering of real-life large-scale clean water capture and pollution remediation. Adv. Mater. 2023, 35, 2306103.

[54]

Chen, W. H.; Du, J.; Zhang, H. B.; Wang, H. C.; Xu, K. C.; Gao, Z. J.; Tong, J. M.; Wang, J.; Xue, J. J.; Zhi, T. Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chin. Chem. Lett. 2023, 109168

[55]

Kang, H.; Zhu, L.; Li, S. Y.; Yu, S. W.; Niu, Y. M.; Zhang, B. S.; Chu, W.; Liu, X. C.; Perathoner, S.; Centi, G. et al. Generation of oxide surface patches promoting H-spillover in Ru/(TiO x )MnO catalysts enables CO2 reduction to CO. Nat. Catal. 2023, 6, 1062–1072.

[56]

Li, M. Z.; Yin, W. N.; Pan, J. A.; Zhu, Y. W.; Sun, N.; Zhang, X. Y.; Wan, Y. T.; Luo, Z. Z.; Yi, L. H.; Wang, L. L. Hydrogen spillover as a promising strategy for boosting heterogeneous catalysis and hydrogen storage. Chem. Eng. J. 2023, 471, 144691.

[57]

Wang, L. L.; Zhang, F. R.; Sun, N.; Xie, L. B.; Zhi, T.; Zhang, Q. F.; Luo, Z. Z.; Liu, X.; Liu, S. J.; Zhao, Q. Boosting hydrogen evolution on MoS2 via synergistic regulation of interlayer dislocations and interlayer spacing. Chem. Eng. J. 2023, 474, 145792.

[58]

Singh, A. K.; Ribas, M. A.; Yakobson, B. I. H-spillover through the catalyst saturation: An ab initio thermodynamics study. ACS Nano 2009, 3, 1657–1662.

[59]

Francke, R. Self-assembly of molecules triggered by electricity. Nature 2022, 603, 229–230.

[60]

Wang, H. J.; Tian, Y. M.; König, B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat. Rev. Chem. 2022, 6, 745–755.

[61]
Wang, L., L.; Zhang, Y. X.; Gu, C.; Yu, H. X.; Zhuang, Y. L.; Zhuang, Z. C. Diverse atomic structure configurations of metal-doped transition metal dichalcogenides for enhancing hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-023-6374-7.
[62]

Wang, F. S.; Xie, L. B.; Sun, N.; Zhi, T.; Zhang, M. Y.; Liu, Y.; Luo, Z. Z.; Yi, L. H.; Zhao, Q.; Wang, L. L. Deformable catalytic material derived from mechanical flexibility for hydrogen evolution reaction. Nano-Micro Lett. 2024, 16, 32.

[63]

Jiang, D.; Yuan, H. F.; Liu, Z.; Chen, Y. K.; Li, Y. Y.; Zhang, X. L.; Xue, G. B.; Liu, H.; Liu, X. Y.; Zhao, L. L. et al. Defect-anchored single-atom-layer Pt clusters on TiO2− x /Ti for efficient hydrogen evolution via photothermal reforming plastics. Appl. Catal. B: Environ. 2023, 339, 123081.

[64]
Yuan, H. F.; Jiang, D.; Li, Z. M.; Liu, X. Y.; Tang, Z. F.; Zhang, X. Z. H.; Zhao, L. L.; Huang, M.; Liu, H.; Song, K. P. et al. Laser synthesis of PtMo single-atom alloy electrode for ultralow voltage hydrogen generation. Adv. Mater., in press, https://doi.org/10.1002/adma.202305375.
[65]
Xie, L. B.; Wang, L. L.; Liu, X.; Zhao, W. W.; Liu, S. J.; Huang, X.; Zhao, Q. Tetra-coordinated W2S3 for efficient dual-pH hydrogen production. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202316306.
Nano Research
Pages 4782-4789
Cite this article:
Yu H, Pan J, Zhang Y, et al. Designing multi-heterogeneous interfaces of Ni-MoS2@NiS2@Ni3S2 hybrid for hydrogen evolution. Nano Research, 2024, 17(6): 4782-4789. https://doi.org/10.1007/s12274-024-6430-y
Topics:

537

Views

7

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 03 December 2023
Revised: 16 December 2023
Accepted: 19 December 2023
Published: 02 February 2024
© Tsinghua University Press 2024
Return