Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Semiconducting polymer nanoparticles (SPNs) have shown great promise in second near-infrared window (NIR-II) phototheranostics. However, the issue of long metabolic time significantly restricts the clinical application of SPNs. In this study, we rationally designed a biodegradable SPN (BSPN50) for NIR-II fluorescence imaging-guided photodynamic therapy (PDT). BSPN50 is prepared by encapsulating a biodegradable SP (BSP50) with an amphiphilic copolymer F-127. BSP50 is composed of NIR-II fluorescent diketopyrrolopyrrole (DPP) segment and degradable poly(phenylenevinylene) (PPV) segment with the ratio of 50/50. BSPN50 has both satisfactory degradability under myeloperoxidase (MPO)/hydrogen peroxide (H2O2) and NIR-II fluorescence emission upon 808 nm laser excitation. Furthermore, BSPN50 shows good photodynamic efficacy under 808 nm laser irradiation. BSPN50 shows a faster degradation rate than BSPN100 which has no PPV segment both in vitro and in vivo. In addition, BSPN50 can effectively diagnose tumor via NIR-II fluorescence imaging and inhibit the tumor growth by PDT. Thus, our study provides a rational approach to construct biodegradable nanoplatforms for efficient tumor NIR-II phototheranostics.
Feng, G. X.; Zhang, G. Q.; Ding, D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem. Soc. Rev. 2020, 49, 8179–8234.
Chen, C.; Ou, H. L.; Liu, R. H.; Ding, D. Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics. Adv. Mater. 2020, 32, 1806331.
Yin, X. R.; Cheng, Y. F.; Feng, Y.; Stiles, W. R.; Park, S. H.; Kang, H.; Choi, H. S. Phototheranostics for multifunctional treatment of cancer with fluorescence imaging. Adv. Drug Deliv. Rev. 2022, 189, 114483.
He, S. S.; Cheng, P. H.; Pu, K. Y. Activatable near-infrared probes for the detection of specific populations of tumour-infiltrating leukocytes in vivo and in urine. Nat. Biomed. Eng. 2023, 7, 281–297.
Zhou, H.; Yi, W. R.; Li, A. G.; Wang, B.; Ding, Q. H.; Xue, L. R.; Zeng, X. D.; Feng, Y. Z.; Li, Q. Q.; Wang, T. et al. Specific Small-Molecule NIR-II Fluorescence Imaging of Osteosarcoma and Lung Metastasis. Adv. Healthcare Mater. 2020, 9, 1901224.
Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 60, 16294–16308.
Shou, K. Q.; Qu, C. R.; Sun, Y.; Chen, H.; Chen, S.; Zhang, L.; Xu, H. B.; Hong, X. C.; Yu, A. X.; Cheng, Z. Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-II probe. Adv. Funct. Mater. 2017, 27, 1700995.
Zhao, J. Y.; Zhong, D.; Zhou, S. B. NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 2018, 6, 349–365.
Chen, Y.; Pei, P.; Lei, Z. H.; Zhang, X.; Yin, D. R.; Zhang, F. A promising NIR-II fluorescent sensor for peptide-mediated long-term monitoring of kidney dysfunction. Angew. Chem., Int. Ed. 2021, 60, 15809–15815.
Zeng, X. D.; Xie, L. R.; Chen, D. L.; Li, S. S.; Nong, J. X.; Wang, B.; Tang, L.; Li, Q. Q.; Li, Y.; Deng, Z. X. et al. A bright NIR-II fluorescent probe for breast carcinoma imaging and image-guided surgery. Chem. Commun. 2019, 55, 14287–14290.
Lan, Q. C.; Yu, P.; Yan, K.; Li, X. M.; Zhang, F.; Lei, Z. H. Polymethine molecular platform for ratiometric fluorescent probes in the second near-infrared window. J. Am. Chem. Soc. 2022, 144, 21010–21015.
Yang, N.; Song, S.; Liu, C.; Ren, J.; Wang, X.; Zhu, S. J.; Yu, C. An aza-BODIPY-based NIR-II luminogen enables efficient phototheranostics. Biomater. Sci. 2022, 10, 4815–4821.
Sun, P. F.; Jiang, X. Y.; Sun, B.; Wang, H.; Li, J. W.; Fan, Q. L.; Huang, W. Electron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy. Biomaterials 2022, 280, 121319.
Jiang, Y. Y.; Pu, K. Y. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 2018, 51, 1840–1849.
Wang, X.; Wu, M.; Li, H. Z.; Jiang, J. L.; Zhou, S. S.; Chen, W. Z.; Xie, C.; Zhen, X.; Jiang, X. Q. Enhancing penetration ability of semiconducting polymer nanoparticles for sonodynamic therapy of large solid tumor. Adv. Sci. (Weinh.) 2022, 9, e2104125.
Li, J. C.; Zhen, X.; Lyu, Y.; Jiang, Y. Y.; Huang, J. G.; Pu, K. Y. Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 2018, 12, 8520–8530.
Lin, H. R.; Bai, H. T.; Yang, Z. W.; Shen, Q.; Li, M. Y.; Huang, Y. M.; Lv, F. T.; Wang, S. Conjugated polymers for biomedical applications. Chem. Commun. 2022, 58, 7232–7244.
Wang, W. Q.; Zhang, X.; Ni, X. Y.; Zhou, W.; Xie, C.; Huang, W.; Fan, Q. L. Semiconducting polymer nanoparticles for NIR-II fluorescence imaging-guided photothermal/thermodynamic combination therapy. Biomater. Sci. 2022, 10, 846–853.
Liu, S. J.; Ou, H. L.; Li, Y. Y.; Zhang, H. K.; Liu, J. K.; Lu, X. F.; Kwok, R. T. K.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. Planar and twisted molecular structure leads to the high brightness of semiconducting polymer nanoparticles for NIR-IIa fluorescence imaging. J. Am. Chem. Soc. 2020, 142, 15146–15156.
Tang, Y. F.; Li, Y. Y.; Lu, X. M.; Hu, X. M.; Zhao, H.; Hu, W. B.; Lu, F.; Fan, Q. L.; Huang, W. Bio-erasable intermolecular donor-acceptor interaction of organic semiconducting nanoprobes for activatable NIR-II fluorescence imaging. Adv. Funct. Mater. 2019, 29, 1807376.
Tang, Y. F.; Li, Y. Y.; Wang, Z.; Pei, F.; Hu, X. M.; Ji, Y.; Li, X.; Zhao, H.; Hu, W. B.; Lu, X. M. et al. Organic semiconducting nanoprobe with redox-activatable NIR-II fluorescence for in vivo real-time monitoring of drug toxicity. Chem. Commun. 2019, 55, 27–30.
Chen, Y.; Yu, H. L.; Wang, Y. S.; Sun, P. F.; Fan, Q. L.; Ji, M. Thiadiazoloquinoxaline derivative-based NIR-II organic molecules for NIR-II fluorescence imaging and photothermal therapy. Biomater. Sci. 2022, 10, 2772–2788.
Xie, C.; Zhou, W.; Zeng, Z. L.; Fan, Q. L.; Pu, K. Y. Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. Chem. Sci. 2020, 11, 10553–10570.
Zhen, X.; Pu, K. Y.; Jiang, X. Q. Photoacoustic Imaging and Photothermal therapy of semiconducting polymer nanoparticles: Signal amplification and second near-infrared construction. Small 2021, 17, 2004723.
Jiang, Y. Y.; Upputuri, P. K.; Xie, C.; Zeng, Z. L.; Sharma, A.; Zhen, X.; Li, J. C.; Huang, J. G.; Pramanik, M.; Pu, K. Y. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 2019, 31, 1808166.
Yang, G. B.; Phua, S. Z. F.; Bindra, A. K.; Zhao, Y. L. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv. Mater. 2019, 31, 1805730.
Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem., Int. Ed. 2013, 52, 3086–3109.
Jiang, Y. Y.; Li, J. C.; Zeng, Z. L.; Xie, C.; Lyu, Y.; Pu, K. Y. Organic photodynamic nanoinhibitor for synergistic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 8161–8165.
Feng, L. H.; Zhu, C. L.; Yuan, H. X.; Liu, L. B.; Lv, F. T.; Wang, S. Conjugated polymer nanoparticles: Preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 2013, 42, 6620–6633.
Li, J. C.; Rao, J. H.; Pu, K. Y. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018, 155, 217–235.
Xie, C.; Zhen, X.; Miao, Q. Q.; Lyu, Y.; Pu, K. Y. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 2018, 30, 1801331.
Lyu, Y.; Zeng, J. F.; Jiang, Y. Y.; Zhen, X.; Wang, T.; Qiu, S. S.; Lou, X.; Gao, M. Y.; Pu, K. Y. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Nano 2018, 12, 1801–1810.
Miao, Q. Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H. W.; Liu, X. G.; Jokerst, J. V.; Pu, K. Y. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 2017, 35, 1102–1110.
Huang, H. Y.; Xie, W. S.; Wan, Q.; Mao, L. C.; Hu, D. N.; Sun, H.; Zhang, X. Y.; Wei, Y. A self-degradable conjugated polymer for photodynamic therapy with reliable postoperative safety. Adv. Sci. (Weinh.) 2022, 9, 2104101.
Guo, C. R.; Sileikaite, I.; Davies, M. J.; Hawkins, C. L. Myeloperoxidase modulates hydrogen peroxide mediated cellular damage in murine macrophages. Antioxidants (Basel) 2020, 9, 1255.
Cui, D.; Xie, C.; Li, J. C.; Lyu, Y.; Pu, K. Y. Semiconducting photosensitizer-incorporated copolymers as near-infrared afterglow nanoagents for tumor imaging. Adv. Healthcare Mater. 2018, 7, 1800329.
Emrullahoğlu, M.; Üçüncü, M.; Karakuş, E. A BODIPY aldoxime-based chemodosimeter for highly selective and rapid detection of hypochlorous acid. Chem. Commun. 2013, 49, 7836–7838.