AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Constructing a fluorinated interface layer enriched with Ge nanoparticles and Li-Ge alloy for stable lithium metal anodes

Fulu Chu1,Jinwei Zhou1Jiamin Liu1Fengcheng Tang1Liubin Song2( )Feixiang Wu1( )
School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, China
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410004, China
Present address: School of Materials Science & Engineering, University of Jinan, Jinan 250022, China
Show Author Information

Graphical Abstract

An artificial solid electrolyte interphase (SEI) is constructed via a simple brush coating method, exhibiting superior interfacial stability and cycling performance. The composition and working mechanism of the hybrid SEI are determined to show mutual reinforcement between fluorinated species and Li-Ge alloys.

Abstract

Lithium metal batteries (LMBs) based on metallic Li exhibit high energy density to be competent for advanced energy storage applications. However, the unstable solid electrolyte interphase (SEI) layer due to continuous decomposition of electrolytes, and the attendant problem of Li dendrite growth frustrate their commercialization process. Herein, a hybrid SEI comprising abundant LiF, lithiophilic Li-Ge alloy, and Ge nanoparticles is constructed via a simple brush coating method. This fluorinated interface layer with embedded Ge-containing components isolates the Li anode from the corrosive electrolyte and facilitates homogenous Li nucleation as well as uniform growth. Consequently, the modified Li anode exhibits remarkable stability without notorious Li dendrites, delivering stable cycling lives of more than 1000 h for symmetric Li||Li cells and over 600 cycles for Li||Cu cells at 1 mA·cm−2. Moreover, the reinforced Li anodes endow multiple full-cell architectures with dramatically improved cyclability under different test conditions. This work provides rational guidance to design an artificial hybrid SEI layer and would stimulate more ideas to solve the dendrite issue and promote the further development of advanced LMBs.

Electronic Supplementary Material

Download File(s)
12274_2024_6437_MOESM1_ESM.pdf (2 MB)

References

[1]

Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

[2]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[3]

Wang, R. H.; Cui, W. S.; Chu, F. L.; Wu, F. X. Lithium metal anodes: Present and future. J. Energy Chem. 2020, 48, 145–159.

[4]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[5]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 Years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561

[6]

Liang, L. W.; Li, X. Y.; Zhao, F.; Zhang, J. Y.; Liu, Y.; Hou, L. R.; Yuan, C. Z. Construction and operating mechanism of high-rate Mo-doped Na3V2(PO4)3@C nanowires toward practicable wide-temperature-tolerance Na-ion and hybrid Li/Na-ion batteries. Adv. Energy Mater. 2021, 11, 2100287.

[7]

Lu, Y. X.; Rong, X. H.; Hu, Y. S.; Chen, L. Q.; Li, H. Research and development of advanced battery materials in China. Energy Storage Mater. 2019, 23, 144–153.

[8]

Li, D. Q.; Chu, F. L.; He, Z. J.; Cheng, Y.; Wu, F. X. Single-material aluminum foil as anodes enabling high-performance lithium-ion batteries: The roles of prelithiation and working mechanism. Mater. Today 2022, 58, 80–90.

[9]

Wu, F. X.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435–459.

[10]

Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

[11]

Meng, Y. S.; Srinivasan, V.; Xu, K. Designing better electrolytes. Science 2022, 378, eabq3750.

[12]

Wang, Y. C.; Chu, F. L.; Zeng, J.; Wang, Q. J.; Naren, T.; Li, Y. Y.; Cheng, Y.; Lei, Y. P.; Wu, F. X. Single atom catalysts for fuel cells and rechargeable batteries: Principles, advances, and opportunities. ACS Nano 2021, 15, 210–239.

[13]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[14]

Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 2017, 29, 1700007.

[15]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[16]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[17]

Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 2020, 120, 13312–13348.

[18]

Deng, R. Y.; Chu, F. L.; Kwofie, F.; Guan, Z. Q.; Chen, J. S. Y.; Wu, F. X. A low-concentration electrolyte for high-voltage lithium-metal batteries: Fluorinated solvation shell and low salt concentration effect. Angew. Chem., Int. Ed. 2022, 61, e202215866.

[19]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[20]

Wu, F. X.; Chu, F. L.; Ferrero, G. A.; Sevilla, M.; Fuertes, A. B.; Borodin, O.; Yu, Y.; Yushin, G. Boosting high-performance in lithium-sulfur batteries via dilute electrolyte. Nano Lett. 2020, 20, 5391–5399.

[21]

Guan, Z. Q.; Chen, X. F.; Chu, F. L.; Deng, R. Y.; Wang, S. S.; Liu, J. M.; Wu, F. X. Low concentration electrolyte enabling anti-clustering of lithium polysulfides and 3D-growth of Li2S for low temperature Li-S conversion chemistry. Adv. Energy Mater. 2023, 13, 2302850.

[22]

Xu, K. A long journey of lithium: From the Big Bang to our smartphones. Energy Environ. Mater. 2019, 2, 229–233.

[23]

Brandt, K. Historical development of secondary lithium batteries. Solid State Ionics 1994, 69, 173–183.

[24]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

[25]

Wu, H. P.; Jia, H.; Wang, C. M.; Zhang, J. G.; Xu, W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 2021, 11, 2003092.

[26]

Chu, F. L.; Deng, R. Y.; Wu, F. X. Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy Storage Mater. 2023, 56, 141–154.

[27]

Wu, F.; Yuan, Y. X.; Cheng, X. B.; Bai, Y.; Li, Y.; Wu, C.; Zhang, Q. Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Mater. 2018, 15, 148–170.

[28]

Kang, D. M.; Xiao, M. Y.; Lemmon, J. P. Artificial solid-electrolyte interphase for lithium metal batteries. Batteries Supercaps 2021, 4, 445–455.

[29]

Fedorov, R. G.; Maletti, S.; Heubner, C.; Michaelis, A.; Ein-Eli, Y. Molecular engineering approaches to fabricate artificial solid-electrolyte interphases on anodes for Li-ion batteries: A critical review. Adv. Energy Mater. 2021, 11, 2101173.

[30]

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

[31]

Zhao, Z. S.; Zhou, X. Y.; Zhang, B.; Huang, F. F.; Wang, Y.; Ma, Z. S.; Liu, J. Regulating steric hindrance of porous organic polymers in composite solid-state electrolytes to induce the formation of LiF-rich SEI in Li-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202308738.

[32]

Yang, H. C.; Li, J.; Sun, Z. H.; Fang, R. P.; Wang, D. W.; He, K.; Cheng, H. M.; Li, F. Reliable liquid electrolytes for lithium metal batteries. Energy Storage Mater. 2020, 30, 113–129.

[33]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

[34]

Fan, X. L.; Wang, C. S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566.

[35]

Zhang, D. C.; Liu, Y. X.; Sun, Z. Y.; Liu, Z. B.; Xu, X. J.; Xi, L.; Ji, S. M.; Zhu, M.; Liu, J. Eutectic-based polymer electrolyte with the enhanced lithium salt dissociation for high-performance lithium metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202310006.

[36]

Zhou, B. X.; Bonakdarpour, A.; Stoševski, I.; Fang, B. Z.; Wilkinson, D. P. Modification of Cu current collectors for lithium metal batteries—A review. Prog. Mater Sci. 2022, 130, 100996.

[37]

Duan, H.; Zhang, J.; Chen, X.; Zhang, X. D.; Li, J. Y.; Huang, L. B.; Zhang, X.; Shi, J. L.; Yin, Y. X.; Zhang, Q. et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries. J. Am. Chem. Soc. 2018, 140, 18051–18057.

[38]

Hao, H. C.; Hutter, T.; Boyce, B. L.; Watt, J.; Liu, P. C.; Mitlin, D. Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal-sulfur and selenium batteries. Chem. Rev. 2022, 122, 8053–8125.

[39]

Chang, Z.; Yang, H. J.; Pan, A. Q.; He, P.; Zhou, H. S. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nat. Commun. 2022, 13, 6788.

[40]

Yang, Y.; Yao, S. Y.; Wu, Y. W.; Ding, J. Y.; Liang, Z. W.; Li, F. K.; Zhu, M.; Liu, J. Hydrogen-bonded organic framework as superior separator with high lithium affinity C=N bond for low N/P ratio lithium metal batteries. Nano Lett. 2023, 23, 5061–5069.

[41]

Peled, E.; Menkin, S. Review-SEI: Past, present and future. J. Electrochem. Soc. 2017, 164, A1703–A1719.

[42]

Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.

[43]

Wang, H. S.; Yu, Z. A.; Kong, X.; Kim, S. C.; Boyle, D. T.; Qin, J.; Bao, Z. N.; Cui, Y. Liquid electrolyte: The nexus of practical lithium metal batteries. Joule 2022, 6, 588–616.

[44]

Li, J. R.; Su, H.; Li, M.; Xiang, J. Y.; Wu, X. Z.; Liu, S. F.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. Fluorinated interface layer with embedded zinc nanoparticles for stable lithium-metal anodes. ACS Appl. Mater. Interfaces 2021, 13, 17690–17698.

[45]

Suo, L. M.; Xue, W. J.; Gobet, M.; Greenbaum, S. G.; Wang, C.; Chen, Y. M.; Yang, W. L.; Li, Y. X.; Li, J. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA 2018, 115, 1156–1161.

[46]

von Aspern, N.; Röschenthaler, G. V.; Winter, M.; Cekic-Laskovic, I. Fluorine and lithium: Ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem., Int. Ed. 2019, 58, 15978–16000.

[47]

Tan, J.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 2021, 11, 2100046.

[48]

Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y. et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 2020, 11, 93.

[49]

Ma, X. X.; Shen, X.; Chen, X.; Fu, Z. H.; Yao, N.; Zhang, R.; Zhang, Q. The origin of fast lithium-ion transport in the inorganic solid electrolyte interphase on lithium metal anodes. Small Struct. 2022, 3, 2200071.

[50]

Ramasubramanian, A.; Yurkiv, V.; Foroozan, T.; Ragone, M.; Shahbazian-Yassar, R.; Mashayek, F. Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries. J. Phys. Chem. C 2019, 123, 10237–10245.

[51]

Sun, K.; Peng, Z. Q. Intermetallic interphases in lithium metal and lithium ion batteries. InfoMat 2021, 3, 1083–1109.

[52]

Gu, X. X.; Dong, J.; Lai, C. Li-containing alloys beneficial for stabilizing lithium anode: A review. Eng. Rep. 2021, 3, e12339.

[53]

Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X. Q.; Nazar, L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2017, 2, 17119.

[54]

Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.

[55]

Liu, S. F.; Ji, X.; Yue, J.; Hou, S.; Wang, P. F.; Cui, C. Y.; Chen, J.; Shao, B. W.; Li, J. R.; Han, F. D. et al. High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc. 2020, 142, 2438–2447.

[56]

Liu, S.; Deng, L. J.; Guo, W. Q.; Zhang, C. Y.; Liu, X. J.; Luo, J. Y. Bulk nanostructured materials design for fracture-resistant lithium metal anodes. Adv. Mater. 2019, 31, 1807585.

[57]

Liao, K. M.; Wu, S. C.; Mu, X. W.; Lu, Q.; Han, M.; He, P.; Shao, Z. P.; Zhou, H. S. Developing a “water-defendable” and “dendrite-free” lithium-metal anode using a simple and promising GeCl4 pretreatment method. Adv. Mater. 2018, 30, 1705711.

[58]

Chu, F. L.; Lei, J.; Deng, R. Y.; Zhou, Y.; Wu, F. X. Modified lithium metal anode via anion-planting protection mechanisms for dendrite-free long-life lithium metal batteries. J. Mater. Chem. A 2023, 11, 2754–2768.

[59]

Wang, Z. J.; Wang, Y. Y.; Wu, C.; Pang, W. K.; Mao, J. F.; Guo, Z. P. Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chem. Sci. 2021, 12, 8945–8966.

[60]

Chu, F. L.; Hu, J. L.; Tian, J.; Zhou, X. J.; Li, Z.; Li, C. L. In situ plating of porous Mg network layer to reinforce anode dendrite suppression in Li-metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 12678–12689.

[61]

Zhao, Q.; Deng, Y.; Utomo, N. W.; Zheng, J. X.; Biswal, P.; Yin, J. F.; Archer, L. A. On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nat. Commun. 2021, 12, 6034.

[62]

Kumar, M.; Rajpalke, M. K.; Roul, B.; Bhat, T. N.; Kalghatgi, A. T.; Krupanidhi, S. B. Determination of MBE grown wurtzite GaN/Ge3N4/Ge heterojunctions band offset by X-ray photoelectron spectroscopy. Phys. Status Solidi (B) 2012, 249, 58–61.

[63]

Lahiri, A.; Borisenko, N.; Borodin, A.; Olschewski, M.; Endres, F. Characterisation of the solid electrolyte interface during lithiation/delithiation of germanium in an ionic liquid. Phys. Chem. Chem. Phys. 2016, 18, 5630–5637.

[64]

Xiao, D. J.; Li, Q.; Luo, D.; Gao, R.; Li, Z. Q.; Feng, M.; Or, T.; Shui, L. L.; Zhou, G. F.; Wang, X. et al. Establishing the preferential adsorption of anion-dominated solvation structures in the electrolytes for high-energy-density lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2011109.

[65]

Liu, Y. Y.; Lin, D. C.; Li, Y. Z.; Chen, G. X.; Pei, A.; Nix, O.; Li, Y. B.; Cui, Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 2018, 9, 3656.

[66]

Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

[67]

Wang, H.; Matsui, M.; Kuwata, H.; Sonoki, H.; Matsuda, Y.; Shang, X. F.; Takeda, Y.; Yamamoto, O.; Imanishi, N. A reversible dendrite-free high-areal-capacity lithium metal electrode. Nat. Commun. 2017, 8, 15106.

[68]

Liu, S. F.; Ji, X.; Piao, N.; Chen, J.; Eidson, N.; Xu, J. J.; Wang, P. F.; Chen, L.; Zhang, J. X.; Deng, T. et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem., Int. Ed. 2021, 60, 3661–3671.

[69]

Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem., Int. Ed. 2018, 57, 5301–5305.

[70]

Prakash, A.; Maikap, S.; Rahaman, S. Z.; Majumdar, S.; Manna, S.; Ray, S. K. Resistive switching memory characteristics of Ge/GeO x nanowires and evidence of oxygen ion migration. Nanoscale Res. Lett. 2013, 8, 220.

[71]

Wang, C. I.; Chang, T. J.; Wang, C. Y.; Yin, Y. T.; Shyue, J. J.; Lin, H. C.; Chen, M. J. Suppression of GeO x interfacial layer and enhancement of the electrical performance of the high- K gate stack by the atomic-layer-deposited AlN buffer layer on Ge metal-oxide-semiconductor devices. RSC Adv. 2019, 9, 592–598.

[72]

Xie, Q.; Deng, S. R.; Schaekers, M.; Lin, D.; Caymax, M.; Delabie, A.; Qu, X. P.; Jiang, Y. L.; Deduytsche, D.; Detavernier, C. Germanium surface passivation and atomic layer deposition of high- k dielectrics—A tutorial review on Ge-based MOS capacitors. Semicond. Sci. Technol. 2012, 27, 074012.

[73]

Chu, F. L.; Wang, M.; Liu, J. M.; Guan, Z. Q.; Yu, H. Y.; Liu, B.; Wu, F. X. Low concentration electrolyte enabling cryogenic lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2205393.

Nano Research
Pages 5148-5158
Cite this article:
Chu F, Zhou J, Liu J, et al. Constructing a fluorinated interface layer enriched with Ge nanoparticles and Li-Ge alloy for stable lithium metal anodes. Nano Research, 2024, 17(6): 5148-5158. https://doi.org/10.1007/s12274-024-6437-4
Topics:

528

Views

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 21 November 2023
Revised: 20 December 2023
Accepted: 21 December 2023
Published: 25 January 2024
© Tsinghua University Press 2024
Return