AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modulation mechanism of electron energy dissipation on superlubricity based on fluorinated 2D ZIFs

Yuxin Li1Lei Liu1Kunpeng Wang2( )Yuhong Liu1( )
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
School of Mechatronic Engineering, Shanghai University, Shanghai 200444, China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Based on fluorinated two-dimensional zeolite imidazole frameworks, the electron energy dissipation process in the microscopic friction has been elucidated from two stages of energy transfer and energy release. According to the electron energy dissipation mechanism, the superlubricity modulation has been achieved.

Abstract

Electron energy dissipation is an important energy dissipation pathway that cannot be ignored in friction process. Two-dimensional zeolite imidazole frameworks (2D ZIFs) and fluorine doping strategies give 2D Zn-ZIF and 2D Co-ZIF unique electrical properties, making them ideal materials for studying electron energy dissipation mechanism. In this paper, based on the superlubricity modulation of 2D fluoridated ZIFs, the optimal tribological properties are obtained on the 2D F-Co-ZIF surface, with the friction coefficient as low as 0.0010. Electrical experiments, density functional theory (DFT) simulation, and fluorescence detection are used to explain the mechanism of fluorine doping regulation of tribological properties from the two stages, namely energy transfer and energy release. Specifically, the energy will transfer into the friction system through the generation of electron–hole pairs under an external excitation, and release by radiation and non-radiation energy dissipation channels. Fluorination reduces energy transfer by altering the electronic properties and band structures of ZIFs, and slows down the charge transfer by enhancing the shielding efficiency, thus slowing the non-radiative energy dissipation rate during the energy release stage. Our insights not only help us better understand the role of fluorine doping in improving tribological properties, but also provide a new way to further explore the electron energy dissipation pathway during friction.

Electronic Supplementary Material

Download File(s)
12274_2024_6441_MOESM1_ESM.pdf (2 MB)

References

[1]

Scharf, T. W.; Prasad, S. V. Solid lubricants: A review. J. Mater. Sci. 2013, 48, 511–531.

[2]

Hirano, M. Superlubricity: A state of vanishing friction. Wear 2003, 254, 932–940.

[3]

Gong, Z. B.; Jia, X. L.; Ma, W.; Zhang, B.; Zhang, J. Y. Hierarchical structure graphitic-like/MoS2 film as superlubricity material. Appl. Surf. Sci. 2017, 413, 381–386.

[4]

Liu, S. W.; Wang, H. P.; Xu, Q.; Ma, T. B.; Yu, G.; Zhang, C. H.; Geng, D. C.; Yu, Z. W.; Zhang, S. G.; Wang, W. Z. et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 2017, 8, 14029.

[5]
Liu, L.; Zhang, Y.; Qiao, Y. J.; Tan, S. C.; Feng, S. F.; Ma, J.; Liu, Y. H.; Luo, J. B. 2D metal–organic frameworks with square grid structure: A promising new-generation superlubricating material. Nano Today 2021 , 40, 101262.
[6]

Liu, L.; Wang, K. P.; Liu, Y. H. Interlayer superlubricity of layered Metal-organic frameworks and its heterojunctions enabled by highly oriented crystalline films. Chem. Eng. J. 2022, 450, 138249.

[7]
Erdemir, A. Solid lubricants and self-lubricating films. In Modern Tribology Handbook; 2nd ed. Bhushan, B., Ed.; CRC Press LLT: Boca Ratón, Florida, 2001; pp 787–818.
[8]

Berman, D.; Erdemir, A.; Sumant, A. V. Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 2018, 12, 2122–2137.

[9]

Burns, A. R.; Houston, J. E.; Carpick, R. W.; Michalske, T. A. Friction and molecular deformation in the tensile regime. Phys. Rev. Lett. 1999, 82, 1181–1184.

[10]

Sun, J. H.; Zhang, Y. N.; Lu, Z. B.; Li, Q. Y.; Xue, Q. J.; Du, S. Y.; Pu, J. B.; Wang, L. P. Superlubricity enabled by pressure-induced friction collapse. J. Phys. Chem. Lett. 2018, 9, 2554–2559.

[11]

Spear, J. C.; Custer, J. P.; Batteas, J. D. The influence of nanoscale roughness and substrate chemistry on the frictional properties of single and few layer graphene. Nanoscale 2015, 7, 10021–10029.

[12]

Guan, D. S.; Charlaix, E.; Tong, P. E. State and rate dependent contact line dynamics over an aging soft surface. Phys. Rev. Lett. 2020, 124, 188003.

[13]

Liao, M. Z.; Nicolini, P.; Du, L. J.; Yuan, J. H.; Wang, S. P.; Yu, H.; Tang, J.; Cheng, P.; Watanabe, K.; Taniguchi, T. et al. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. Nat. Mater. 2022, 21, 47–53.

[14]

Deng, Z.; Smolyanitsky, A.; Li, Q. Y.; Feng, X. Q.; Cannara, R. J. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat. Mater. 2012, 11, 1032–1037.

[15]

Li, J. J.; Li, J. F.; Luo, J. B. Superlubricity of graphite sliding against graphene nanoflake under ultrahigh contact pressure. Adv. Sci. 2018, 5, 1800810.

[16]

Liu, L.; Wang, K. P.; Liu, Y. H.; Luo, J. B. The relationship between surface structure and super-lubrication performance based on 2D MOFs. Appl. Mater. Today 2022, 26, 101382.

[17]

Megra, Y. T.; Suk, J. W. Adhesion properties of 2D materials. J. Phys. D: Appl. Phys. 2019, 52, 364002.

[18]

Cannara, R. J.; Brukman, M. J.; Cimatu, K.; Sumant, A. V.; Baldelli, S.; Carpick, R. W. Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 2007, 318, 780–783.

[19]

Sales de Mello, S. R.; Maia da Costa, M. E. H.; Menezes, C. M.; Boeira, C. D.; Freire Jr, F. L.; Alvarez, F.; Figueroa, C. A. On the phonon dissipation contribution to nanoscale friction by direct contact. Sci. Rep. 2017, 7, 3242.

[20]
Ishikawa, M.; Wada, N.; Miyakawa, T.; Matsukawa, H.; Suzuki, M.; Sasaki, N.; Miura, K. Experimental observation of phonon generation and propagation at a MoS2(0001) surface in the friction process. Phys. Rev. B 2016 , 93, 201401(R).
[21]

Krim, J.; Chiarello, R. Sliding friction measurements of molecularly thin films. J. Vac. Sci. Technol. A 1991, 9, 2566–2569.

[22]

Persson, B. N. J.; Zhang, Z. Y. Theory of friction: Coulomb drag between two closely spaced solids. Phys. Rev. B 1998, 57, 7327–7334.

[23]

Persson, B. N. J.; Schumacher, D.; Otto, A. Surface resistivity and vibrational damping in adsorbed layers. Chem. Phys. Lett. 1991, 178, 204–212.

[24]

Dayo, A.; Alnasrallah, W.; Krim, J. Superconductivity-dependent sliding friction. Phys. Rev. Lett. 1998, 80, 1690–1693.

[25]

Park, J. Y.; Ogletree, D. F.; Thiel, P. A.; Salmeron, M. Electronic control of friction in silicon pn junctions. Science 2006, 313, 186–186.

[26]

Park, J. Y.; Qi, Y. B.; Ogletree, D. F.; Thiel, P. A.; Salmeron, M. Influence of carrier density on the friction properties of silicon p n junctions. Phys. Rev. B 2007, 76, 064108.

[27]

Qi, Y. B.; Park, J. Y.; Hendriksen, B. L. M.; Ogletree, D. F.; Salmeron, M. Electronic contribution to friction on GaAs: An atomic force microscope study. Phys. Rev. B 2008, 77, 184105.

[28]

Zhou, Y. S.; Li, S. M.; Niu, S. M.; Wang, Z. L. Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 2016, 9, 3705–3713.

[29]

Wang, L. F.; Zhou, X.; Ma, T. B.; Liu, D. M.; Gao, L.; Li, X.; Zhang, J.; Hu, Y. Z.; Wang, H.; Dai, Y. D. et al. Superlubricity of a graphene/MoS2 heterostructure: A combined experimental and DFT study. Nanoscale 2017, 9, 10846–10853.

[30]

Cahangirov, S.; Ciraci, S.; Özçelik, V. O. Superlubricity through graphene multilayers between Ni(111) surfaces. Phys. Rev. B 2013, 87, 205428.

[31]

He, F.; Yang, X.; Bian, Z. L.; Xie, G. X.; Guo, D.; Luo, J. B. In-plane potential gradient induces low frictional energy dissipation during the stick-slip sliding on the surfaces of 2D materials. Small 2019, 15, 1904613.

[32]

Song, A. S.; Shi, R. Y.; Lu, H. L.; Wang, X. Y.; Hu, Y. Z.; Gao, H. J.; Luo, J. B.; Ma, T. B. Fluctuation of interfacial electronic properties induces friction tuning under an electric field. Nano Lett. 2022, 22, 1889–1896.

[33]

Liu, H.; Yang, B. M.; Wang, C.; Han, Y. S.; Liu, D. M. The mechanisms and applications of friction energy dissipation. Friction 2023, 11, 839–864.

[34]

Luo, J. B.; Liu, M.; Ma, L. R. Origin of friction and the new frictionless technology-superlubricity: Advancements and future outlook. Nano Energy 2021, 86, 106092.

[35]

Xu, Z. M.; Huang, P. Study on the energy dissipation mechanism of atomic-scale friction with composite oscillator model. Wear 2007, 262, 972–977.

[36]

Krim, J. Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv. Phys. 2012, 61, 155–323.

[37]

Pecchia, A.; Romano, G.; Gagliardi, A.; Frauenheim, T.; Di Carlo, A. Heat dissipation and non-equilibrium phonon distributions in molecular devices. J. Comput. Electron. 2007, 6, 335–339.

[38]

Pecchia, A.; Romano, G.; Di Carlo, A. Theory of heat dissipation in molecular electronics. Phys. Rev. B 2007, 75, 035401.

[39]

Tan, S. L.; Zhao, Y. P.; Dong, J. S.; Yang, G. W.; Ouyang, G. Determination of optimum optoelectronic properties in vertically stacked MoS2/h-BN/WSe2 van der Waals heterostructures. Phys. Chem. Chem. Phys. 2019, 21, 23179–23186.

[40]

Intravaia, F.; Mkrtchian, V. E.; Buhmann, S. Y.; Scheel, S.; Dalvit, D. A. R.; Henkel, C. Friction forces on atoms after acceleration. J. Phys.: Condens. Matter. 2015, 27, 214020.

[41]

Bai, C. N.; Yang, Z. X.; Zhang, J.; Zhang, B.; Yu, Y. L.; Zhang, J. Y. Friction behavior and structural evolution of hexagonal boron nitride: A relation to environmental molecules containing -OH functional group. ACS Appl. Mater. Interfaces 2022, 14, 19043–19055.

[42]

Sohier, T.; Ponomarev, E.; Gibertini, M.; Berger, H.; Marzari, N.; Ubrig, N.; Morpurgo, A. F. Enhanced electron-phonon interaction in multivalley materials. Phys. Rev. X 2019, 9, 031019.

[43]

Buldum, A.; Leitner, D. M.; Ciraci, S. Model for phononic energy dissipation in friction. Phys. Rev. B 1999, 59, 16042–16046.

[44]

Jin, X.; Cerea, A.; Messina, G. C.; Rovere, A.; Piccoli, R.; De Donato, F.; Palazon, F.; Perucchi, A.; Di Pietro, P.; Morandotti, R. et al. Reshaping the phonon energy landscape of nanocrystals inside a terahertz plasmonic nanocavity. Nat. Commun. 2018, 9, 763.

[45]

Kunal, K.; Aluru, N. R. Multiscale approach to modeling intrinsic dissipation in solids. Phys. Rev. B 2016, 94, 064103.

[46]

Kunal, K.; Aluru, N. R. Phonon mediated loss in a graphene nanoribbon. J. Appl. Phys. 2013, 114, 084302.

[47]

Jin, Z. X.; Subotnik, J. E. Nonadiabatic dynamics at metal surfaces: Fewest switches surface hopping with electronic relaxation. J. Chem. Theory Comput. 2021, 17, 614–626.

[48]

Bradac, C.; Xu, Z. Q.; Aharonovich, I. Quantum energy and charge transfer at two-dimensional interfaces. Nano Lett. 2021, 21, 1193–1204.

[49]

de Boer, M. P.; Mayer, T. M. Tribology of MEMS. MRS Bull. 2001, 26, 302–304.

[50]
Wang, W. Y.; Wang, Y. L.; Bao, H. F.; Xiong, B.; Bao, M. H. Friction and wear properties in MEMS. Sens. Actuators A: Phys. 2002 , 9798, 486–491.
[51]
Spear, J. C.; Ewers, B. W.; Batteas, J. D. 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 2015 , 10, 301–314.
[52]
Zhang, S. M.; Vu, C. C.; Li, Q. Y.; Tagawa, N.; Zheng, Q. S. Superlubricity relevant in hard disk drive applications. In ASME 2016 Conference on Information Storage and Processing Systems, Santa Clara, CA, 2016, pp V001T01A004.
[53]

Liu, H.; Hoeppener, S.; Schubert, U. S. Nanoscale materials patterning by local electrochemical lithography. Adv. Eng. Mater. 2016, 18, 890–902.

[54]

Wen, X. L.; Bai, P. P.; Meng, Y. G.; Ma, L. R.; Tian, Y. High-temperature superlubricity realized with chlorinated-phenyl and methyl-terminated silicone oil and hydrogen-ion running-in. Langmuir 2022, 38, 10043–10051.

[55]

Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muñoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J. C. et al. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 2010, 5, 351–372.

[56]

Zhai, W. Z.; Zhou, K. Nanomaterials in superlubricity. Adv. Funct. Mater. 2019, 29, 1806395.

[57]

Wu, X. Y.; Liu, W.; Wu, H.; Zong, X.; Yang, L. X.; Wu, Y. Z.; Ren, Y. X.; Shi, C. Y.; Wang, S. F.; Jiang, Z. Y. Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J. Membr. Sci. 2018, 548, 309–318.

[58]

Eslava, S.; Zhang, L. P.; Esconjauregui, S.; Yang, J. W.; Vanstreels, K.; Baklanov, M. R.; Saiz, E. Metal–organic framework ZIF-8 films as low- κ dielectrics in microelectronics. Chem. Mater. 2013, 25, 27–33.

[59]

Liu, Q. F.; Tian, S. Q.; Zhao, X. J.; Sankar, G. An enhanced fluorescent ZIF-8 film by capturing guest molecules for light-emitting applications. J. Mater. Chem. C 2021, 9, 5819–5826.

[60]

Diamond, B. G.; Payne, L. I.; Hendon, C. H. Ligand field tuning of d-orbital energies in metal–organic framework clusters. Commun. Chem. 2023, 6, 67.

[61]

Vitillo, J. G.; Gagliardi, L. Modeling metal influence on the gate opening in ZIF-8 materials. Chem. Mater. 2021, 33, 4465–4473.

[62]

Jia, Z. Q.; Wu, G. R.; Wu, D. Z.; Tong, Z.; Ho, W. S. W. Preparation of ultra-stable ZIF-8 dispersions in water and ethanol. J. Porous Mater. 2017, 24, 1655–1660.

[63]

Liu, S. J.; Liu, J. D.; Hou, X. D.; Xu, T. T.; Tong, J.; Zhang, J. X.; Ye, B. J.; Liu, B. Porous liquid: A stable ZIF-8 colloid in ionic liquid with permanent porosity. Langmuir 2018, 34, 3654–3660.

[64]

Wan, J. W.; Liu, D.; Xiao, H.; Rong, H. P.; Guan, S.; Xie, F.; Wang, D. S.; Li, Y. D. Facet engineering in metal organic frameworks to improve their electrochemical activity for water oxidation. Chem. Commun. 2020, 56, 4316–4319.

[65]

Li, J. F.; Cao, W.; Li, J. J.; Ma, M. Fluorination to enhance superlubricity performance between self-assembled monolayer and graphite in water. J. Colloid Interface Sci. 2021, 596, 44–53.

[66]

Zhang, L. F.; Wang, F. G.; Qiang, L.; Gao, K. X.; Zhang, B.; Zhang, J. Y. Recent advances in the mechanical and tribological properties of fluorine-containing DLC films. RSC Adv. 2015, 5, 9635–9649.

[67]

Wang, L. F.; Ma, T. B.; Hu, Y. Z.; Wang, H.; Shao, T. M. Ab initio study of the friction mechanism of fluorographene and graphane. J. Phys. Chem. C 2013, 117, 12520–12525.

[68]

Guo, Y. F.; Qiu, J. P.; Guo, W. L. Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization. Nanoscale 2016, 8, 575–580.

[69]

Lee, J. Y.; Kim, J. H.; Jung, Y.; Shin, J. C.; Lee, Y.; Kim, K.; Kim, N.; van der Zande, A. M.; Son, J.; Lee, G. H. Evolution of defect formation during atomically precise desulfurization of monolayer MoS2. Commun. Mater. 2021, 2, 80.

[70]

Li, Y. X.; Wang, K. P.; Liu, L.; Liu, Y. H. Superlubricity modulation by molecular structure of two-dimensional zeolite imidazole frameworks. Mater. Today Nano 2023, 24, 100414.

[71]

Finkenwirth, F.; Sippach, M.; Pecina, S. N.; Gäde, M.; Ruta, J.; Ricke, A.; Bondarenko, E.; Klare, J. P.; Zinke, M.; Lange, S. et al. Dynamic interactions of CbiN and CbiM trigger activity of a cobalt energy-coupling-factor transporter. Biochim. Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183114.

[72]

Tan, Y. Q.; Guo, M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Constr. Build. Mater. 2013, 47, 254–260.

[73]

Huntsberger, J. R. Surface-energy, wetting and adhesion. J. Adhes. 1981, 12, 3–12.

[74]

Hod, O.; Meyer, E.; Zheng, Q. S.; Urbakh, M. Structural superlubricity and ultralow friction across the length scales. Nature 2018, 563, 485–492.

[75]

Quaranta, M.; Borisov, S. M.; Klimant, I. Indicators for optical oxygen sensors. Bioanal. Rev. 2012, 4, 115–157.

[76]

Chou, X. Y.; Ye, J.; Cui, M. M.; Li, Y. D.; He, Y. Z.; Liu, X. F.; Wang, H. C. Construction of 2D/2D Heterogeneous of ZIF‐8/SnS2 composite as a transfer of band‐band system for efficient visible photocatalytic activity. Chemistryselect 2019, 4, 11227–11234.

[77]

Syzgantseva, M. A.; Stepanov, N. F.; Syzgantseva, O. A. Band alignment as the method for modifying electronic structure of metal–organic frameworks. ACS Appl. Mater. Interfaces 2020, 12, 17611–17619.

[78]

Wang, S.; Zhang, J. J.; Zong, M. Y.; Xu, J.; Wang, D. H.; Bu, X. H. Energy level engineering: Ru single atom anchored on Mo-MOF with a [Mo8O26(im)2]4− structure acts as a biomimetic photocatalyst. ACS Catal. 2022, 12, 7960–7974.

[79]

Darvishi, R.; Pakizeh, E. A combined experimental and first-principle calculation (DFT study) for in situ polymer inclusion membrane-assisted growth of metal–organic frameworks (MOFs). Int. J. Polym. Sci. 2020, 2020, 1018347.

[80]

Mounkachi, O.; Salmani, E.; Lakhal, M.; Ez-Zahraouy, H.; Hamedoun, M.; Benaissa, M.; Kara, A.; Ennaoui, A.; Benyoussef, A. Band-gap engineering of SnO2. Sol. Energy Mater. Sol. Cells 2016, 148, 34–38.

[81]

Pandey, S.; Demaske, B.; Ejegbavwo, O. A.; Berseneva, A. A.; Setyawan, W.; Shustova, N.; Phillpot, S. R. Electronic structures and magnetism of Zr-, Th-, and U-based metal–organic frameworks (MOFs) by density functional theory. Comput. Mater. Sci. 2020, 184, 109903.

[82]

Hu, Z. H.; Liu, X.; Hernández-Martínez, P. L.; Zhang, S. S.; Gu, P.; Du, W.; Xu, W. G.; Demir, H. V.; Liu, H. Y.; Xiong, Q. H. Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat 2022, 4, e12290.

[83]

Park, S. J.; Kim, H. S.; Jin, F. L. Influence of fluorination on surface and dielectric characteristics of polyimide thin film. J. Colloid Interface Sci. 2005, 282, 238–240.

[84]

Shin, T.; Cho, K. S.; Yun, D. J.; Kim, J.; Li, X. S.; Moon, E. S.; Baik, C. W.; Kim, S. I.; Kim, M.; Choi, J. H. et al. Exciton recombination, energy-, and charge transfer in single- and multilayer quantum-dot films on silver plasmonic resonators. Sci. Rep. 2016, 6, 26204.

[85]

Wu, J. H.; Lu, Y. H.; Feng, S. R.; Wu, Z. Q.; Lin, S. Y.; Hao, Z. Z.; Yao, T. Y.; Li, X. M.; Zhu, H. W.; Lin, S. S. The interaction between quantum dots and graphene: The applications in graphene‐based solar cells and photodetectors. Adv. Funct. Mater. 2018, 28, 1804712.

[86]

Raja, A.; Chaves, A.; Yu, J.; Arefe, G.; Hill, H. M.; Rigosi, A. F.; Berkelbach, T. C.; Nagler, P.; Schüller, C.; Korn, T. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 2017, 8, 15251.

[87]

Raja, A.; Montoya-Castillo, A.; Zultak, J.; Zhang, X. X.; Ye, Z. L.; Roquelet, C.; Chenet, D. A.; van der Zande, A. M.; Huang, P.; Jockusch, S. et al. Energy transfer from quantum dots to graphene and MoS2: The role of absorption and screening in two-dimensional materials. Nano Lett. 2016, 16, 2328–2333.

[88]

Yu, H. K.; Peng, Y. S.; Yang, Y.; Li, Z. Y. Plasmon-enhanced light-matter interactions and applications. npj Comput. Mater. 2019, 5, 45.

[89]

Knyazeva, N. P.; Stefanovich, N. N.; Krotova, N. A. Investigation of electric discharge phenomena in the adhesion and rolling friction of polytetrafluoroethylene films modified by grafting. Colloid J. USSR 1974, 36, 138–141.

Nano Research
Pages 3198-3209
Cite this article:
Li Y, Liu L, Wang K, et al. Modulation mechanism of electron energy dissipation on superlubricity based on fluorinated 2D ZIFs. Nano Research, 2024, 17(4): 3198-3209. https://doi.org/10.1007/s12274-024-6441-8
Topics:

640

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 06 September 2023
Revised: 02 November 2023
Accepted: 22 December 2023
Published: 02 February 2024
© Tsinghua University Press 2024
Return