AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Exfoliation of bulk 2H-MoS2 into bilayer 1T-phase nanosheets via ether-induced superlattices

Xiuling Shi1,§Dongmei Lin2,§Zhuorui Xiao1Yibo Weng1Hanxiang Zhou1Xiaoying Long1Zhiyu Ding1Fuyuan Liang1Yan Huang1Guohua Chen2,3Kaikai Li1( )Tong-Yi Zhang4( )
School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
Department of Mechanical Engineering, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
The Hong Kong University of Science and Technology (Guangzhou), Guangzhou Municipal Key Laboratory of Materials Informatics, Advanced Materials Thrust and Sustainable Energy and Environment Thrust, Nansha, Guangzhou 511400, China

§ Xiuling Shi and Dongmei Lin contributed equally to this work.

Show Author Information

Graphical Abstract

Molybdenum disulfide (MoS2) undergoes a phase transition to superlattice upon lithiation in ether electrolyte, which enables controllable exfoliation of MoS2 into few-layer nanosheets for hydrogen evolution reaction (HER).

Abstract

The exfoliation of bulk 2H-molybdenum disulfide (2H-MoS2) into few-layer nanosheets with 1T-phase and controlled layers represents a daunting challenge towards the device applications of MoS2. Conventional ion intercalation assisted exfoliation needs the use of hazardous n-butyllithium and/or elaborate control of the intercalation potential to avoid the decomposition of the MoS2. This work reports a facile strategy by intercalating Li ions electrochemically with ether-based electrolyte into the van der Waals (vdW) channels of MoS2, which successfully avoids the decomposition of MoS2 at low potentials. The co-intercalation of Li+ and the ether solvent into MoS2 makes a first-order phase transformation, forming a superlattice phase, which preserves the layered structure and hence enables the exfoliation of bulk 2H-MoS2 into bilayer nanosheets with 1T-phase. Compared with the pristine 2H-MoS2, the bilayer 1T-MoS2 nanosheets exhibit better electrocatalytic performance for the hydrogen evolution reaction (HER). This facile method should be easily extended to the exfoliation of various transition metal dichalcogenides (TMDs).

Electronic Supplementary Material

Download File(s)
12274_2024_6446_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

[2]

Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712.

[3]

Yoo, H. D.; Liang, Y. L.; Dong, H.; Lin, J. H.; Wang, H.; Liu, Y. S.; Ma, L.; Wu, T. P.; Li, Y. F.; Ru, Q. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat. Commun. 2017, 8, 339.

[4]

Chen, D. Y.; Chen, W. X.; Ma, L.; Ji, G.; Chang, K.; Lee, J. Y. Graphene-like layered metal dichalcogenide/graphene composites: Synthesis and applications in energy storage and conversion. Mater. Today 2014, 17, 184–193.

[5]

Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.

[6]

Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.

[7]

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

[8]

Jellinek, F.; Brauer, G.; Müller, H. Molybdenum and niobium sulphides. Nature 1960, 185, 376–377.

[9]

Zhang, X.; Lai, Z. C.; Tan, C. L.; Zhang, H. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and applications. Angew. Chem., Int. Ed. 2016, 55, 8816–8838.

[10]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[11]

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

[12]

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

[13]

Wu, W. Z.; Wang, L.; Yu, R. M.; Liu, Y. Y.; Wei, S. H.; Hone, J.; Wang, Z. L. Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 2016, 28, 8463–8468.

[14]

Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

[15]

Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

[16]

Miremadi, B. K.; Morrison, S. R. High activity catalyst from exfoliated MoS2. J. Catal. 1987, 103, 334–345.

[17]
Ye, L. N.; Wu, C. Z.; Guo, W.; Xie, Y. MoS2 hierarchical hollow cubic cages assembled by bilayers: One-step synthesis and their electrochemical hydrogen storage properties. Chem. Commun. 2006 , 4738–4740.
[18]

Wang, T. Y.; Chen, S. Q.; Pang, H.; Xue, H. G.; Yu, Y. MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 2017, 4, 1600289.

[19]

Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209–231.

[20]
Deng, Z. N.; Jiang, H.; Hu, Y. J.; Liu, Y.; Zhang, L.; Liu, H. L.; Li, C. Z. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv. Mater. 2017 , 29, 1603020.
[21]

Zuo, X. X.; Chang, K.; Zhao, J.; Xie, Z. Z.; Tang, H. W.; Li, B.; Chang, Z. R. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 2016, 4, 51–58.

[22]

Yang, E.; Ji, H.; Jung, Y. Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J. Phys. Chem. C 2015, 119, 26374–26380.

[23]

Brent, J. R.; Savjani, N.; O'Brien, P. Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog. Mater. Sci. 2017, 89, 411–478.

[24]

Zhu, X. L.; Su, Z. P.; Wu, C.; Cong, H. J.; Ai, X. P.; Yang, H. X.; Qian, J. F. Exfoliation of MoS2 nanosheets enabled by a redox-potential-matched chemical lithiation reaction. Nano Lett. 2022, 22, 2956–2963.

[25]

Fan, X. B.; Xu, P. T.; Li, Y. C.; Zhou, D. K.; Sun, Y. F.; Nguyen, M. A. T.; Terrones, M.; Mallouk, T. E. Controlled exfoliation of MoS2 crystals into trilayer nanosheets. J. Am. Chem. Soc. 2016, 138, 5143–5149.

[26]

Mohammadpour, Z.; Abdollahi, S. H.; Safavi, A. Sugar-based natural deep eutectic mixtures as green intercalating solvents for high-yield preparation of stable MoS2 nanosheets: Application to electrocatalysis of hydrogen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 5896–5906.

[27]

Benavente, E.; Santa Ana, M. A.; Mendizábal, F.; González, G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 2002, 224, 87–109.

[28]

Lin, D. M.; Shi, X. L.; Li, K. K.; Wang, M.; Sun, S.; Wu, J. W.; Zhou, L. M.; Chen, G. H.; Zhang, T. Y. Ether-induced phase transition toward stabilized layered structure of MoS2 with extraordinary sodium storage performance. ACS Mater. Lett. 2022, 4, 1341–1349.

[29]

Yu, X. Q.; Pan, H. L.; Wan, W.; Ma, C.; Bai, J. M.; Meng, Q. P.; Ehrlich, S. N.; Hu, Y. S.; Yang, X. Q. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. Nano Lett. 2013, 13, 4721–4727.

[30]

Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826–4830.

[31]

Chang, K.; Geng, D. S.; Li, X. F.; Yang, J. L.; Tang, Y. J.; Cai, M.; Li, R. Y.; Sun, X. L. Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv. Energy Mater. 2013, 3, 839–844.

[32]

Fang, X. P.; Hua, C. X.; Guo, X. W.; Hu, Y. S.; Wang, Z. X.; Gao, X. P.; Wu, F.; Wang, J. Z.; Chen, L. Q. Lithium storage in commercial MoS2 in different potential ranges. Electrochim. Acta 2012, 81, 155–160.

[33]

Xiong, F.; Wang, H. T.; Liu, X. G.; Sun, J.; Brongersma, M.; Pop, E.; Cui, Y. Li intercalation in MoS2: In situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 2015, 15, 6777–6784.

[34]

Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693–6697.

[35]

Enyashin, A. N.; Seifert, G. Density-functional study of Li x MoS2 intercalates (0 ≤ x ≤ 1). Comput. Theor. Chem. 2012, 999, 13–20.

[36]

Rocquefelte, X.; Boucher, F.; Gressier, P.; Ouvrard, G.; Blaha, P.; Schwarz, K. Mo cluster formation in the intercalation compound LiMoS2. Phys. Rev. B 2000, 62, 2397–2400.

[37]

Petkov, V.; Billinge, S. J. L.; Larson, P.; Mahanti, S. D.; Vogt, T.; Rangan, K. K.; Kanatzidis, M. G. Structure of nanocrystalline materials using atomic pair distribution function analysis: Study of LiMoS2. Phys. Rev. B 2002, 65, 092105.

[38]

Rocquefelte, X.; Bouessay, I.; Boucher, F.; Gressier, P.; Ouvrard, G. Synergetic theoretical and experimental structure determination of nanocrystalline materials: Study of LiMoS2. J. Solid State Chem. 2003, 175, 380–383.

[39]

Wu, Z. C.; Li, B. E.; Xue, Y. J.; Li, J. J.; Zhang, Y. L.; Gao, F. Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors. J. Mater. Chem. A 2015, 3, 19445–19454.

[40]

Azhagurajan, M.; Kajita, T.; Itoh, T.; Kim, Y. G.; Itaya, K. In situ visualization of lithium ion intercalation into MoS2 single crystals using differential optical microscopy with atomic layer resolution. J. Am. Chem. Soc. 2016, 138, 3355–3361.

[41]

Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 2013, 25, 3979–3984.

[42]

Zhang, L.; Sun, D.; Kang, J.; Feng, J.; Bechtel, H. A.; Wang, L. W.; Cairns, E. J.; Guo, J. H. Electrochemical reaction mechanism of the MoS2 electrode in a lithium-ion cell revealed by in situ and operando X-ray absorption spectroscopy. Nano Lett. 2018, 18, 1466–1475.

[43]

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

[44]

Jin, Q.; Liu, N.; Chen, B. H.; Mei, D. H. Mechanisms of semiconducting 2H to metallic 1T phase transition in two-dimensional MoS2 nanosheets. J. Phys. Chem. C 2018, 122, 28215–28224.

[45]

Du, X. Q.; Guo, X. Y.; Huang, J. Q.; Lu, Z. H.; Tan, H.; Huang, J. Q.; Zhu, Y.; Zhang, B. Exploring the structure evolution of MoS2 upon Li/Na/K ion insertion and the origin of the unusual stability in potassium ion batteries. Nanoscale Horiz. 2020, 5, 1618–1627.

[46]

Du, X. Q.; Huang, J. Q.; Guo, X. Y.; Lin, X. Y.; Huang, J. Q.; Tan, H.; Zhu, Y.; Zhang, B. Preserved layered structure enables stable cyclic performance of MoS2 upon potassium insertion. Chem. Mater. 2019, 31, 8801–8809.

[47]

Sharma, C. H.; Surendran, A. P.; Varghese, A.; Thalakulam, M. Stable and scalable 1T MoS2 with low temperature-coefficient of resistance. Sci. Rep. 2018, 8, 12463.

[48]
Sun, D.; Huang, D.; Wang, H. Y.; Xu, G. L.; Zhang, X. Y.; Zhang, R.; Tang, Y. G.; Abd Ei-Hady, D.; Alshitari, W.; Saad Al-Bogami, A. et al. 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy 2019 , 61, 361–369.
[49]

Wang, S.; Zhang, Y. H.; Zhao, D. Y.; Li, J.; Kang, H.; Zhao, S. W.; Jin, T. T.; Zhang, J. X.; Xue, Z. Y.; Wang, Y. et al. Fast and controllable synthesis of AB-stacked bilayer MoS2 for photoelectric detection. 2D Mater. 2022, 9, 015016.

[50]

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

[51]

Lei, Z. D.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 2018, 8, 1703482.

[52]

Pang, S. Y.; Io, W. F.; Wong, L. W.; Zhao, J.; Hao, J. H. Direct and in situ growth of 1T' MoS2 and 1T MoSe2 on electrochemically synthesized MXene as an electrocatalyst for hydrogen generation. Nano Energy 2022, 103, 107835.

[53]

Qin, Y.; Yu, T. T.; Deng, S. H.; Zhou, X. Y.; Lin, D. M.; Zhang, Q.; Jin, Z. Y.; Zhang, D. F.; He, Y. B.; Qiu, H. J. et al. RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nat. Commun. 2022, 13, 3784.

Nano Research
Pages 5705-5711
Cite this article:
Shi X, Lin D, Xiao Z, et al. Exfoliation of bulk 2H-MoS2 into bilayer 1T-phase nanosheets via ether-induced superlattices. Nano Research, 2024, 17(6): 5705-5711. https://doi.org/10.1007/s12274-024-6446-3
Topics:

694

Views

3

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 11 November 2023
Revised: 10 December 2023
Accepted: 22 December 2023
Published: 25 January 2024
© Tsinghua University Press 2024
Return