AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Regulation of pseudographitic carbon domain to boost sodium energy storage

Zhidong HouMingwei JiangDa LeiXiang ZhangYuyang GaoJian-Gan Wang( )
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi’an 710072, China
Show Author Information

Graphical Abstract

A facile molten-salt-mediated strategy is adopted for realizing appropriate interlayer spacing and extended pseudographitic domain of hard carbon. Benefiting from the microstructure optimization, hard carbon anode delivers remarkable sodium storage capacity and kinetics.

Abstract

Hard carbon anode has shown extraordinary potentials for sodium-ion batteries (SIBs) owing to the cost-effectiveness and advantaged microstructure. Nevertheless, the widespread application of hard carbon is still hindered by the insufficient sodium storage capacity and depressed rate property, which are mainly induced by the undesirable pseudographitic structure. Herein, we develop a molten-salt-mediated strategy to regulate the pseudographitic structure of hard carbon with suitable interlayer spacing and enlarged pseudographitic domain, which is conducive to the intercalation capacity and diffusion kinetics of sodium ions. Impressively, the optimized hard carbon anode delivers a high reversible capacity of 320 mAh·g−1, along with superior rate property (138 mAh·g−1 at 2 A·g−1) and stable cyclability over 1800 cycles. Moreover, the in situ Raman spectroscopic study and full-cell assembly further investigate the sodium storage mechanism and practical implement of obtained hard carbon. This work pioneers a low-cost and effective route to regulate the pseudographitic structure of hard carbon materials for advanced SIBs.

Electronic Supplementary Material

Download File(s)
12274_2024_6448_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Hirsh, H. S.; Li, Y. X.; Tan, D. H. S.; Zhang, M. H.; Zhao, E. Y.; Meng, Y. S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274.

[2]

Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

[3]

Bashir, T.; Zhou, S. W.; Yang, S. Q.; Ismail, S. A.; Ali, T.; Wang, H.; Zhao, J. Q.; Gao, L. J. Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem. Energy Rev. 2023, 6, 5.

[4]

Sun, N.; Qiu, J. S.; Xu, B. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate. Adv. Energy Mater. 2022, 12, 2200715.

[5]

Hao, Y. C.; Shao, J. W.; Yuan, Y. F.; Li, X. F.; Xiao, W.; Sari, H. M. K.; Liu, T. F.; Lu, J. Design of phosphide anodes harvesting superior sodium storage: Progress, challenges, and perspectives. Adv. Funct. Mater. 2023, 33, 2212692.

[6]

Qiao, S. Y.; Zhou, Q. W.; Ma, M.; Liu, H. K.; Dou, S. X.; Chong, S. K. Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 2023, 17, 11220–11252.

[7]

Xu, Z. L.; Park, J.; Yoon, G.; Kim, H.; Kang, K. Graphitic carbon materials for advanced sodium-ion batteries. Small Methods 2019, 3, 1800227.

[8]

Shao, W. L.; Shi, H. D.; Jian, X. G.; Wu, Z. S.; Hu, F. Y. Hard-carbon anodes for sodium-ion batteries: Recent status and challenging perspectives. Adv. Energy Sustain. Res. 2022, 3, 2200009.

[9]

Zhang, M. H.; Li, Y.; Wu, F.; Bai, Y.; Wu, C. Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode. Nano Energy 2021, 82, 105738.

[10]

Wang, N. N.; Wang, Y. X.; Xu, X.; Liao, T.; Du, Y.; Bai, Z. C.; Dou, S. X. Defect sites-rich porous carbon with pseudocapacitive behaviors as an ultrafast and long-term cycling anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 9353–9361.

[11]

Zhou, C. L.; Wang, D. K.; Li, A.; Pan, E. Z.; Liu, H. Y.; Chen, X. H.; Jia, M. Q.; Song, H. H. Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chem. Eng. J. 2020, 380, 122457.

[12]

Yan, J.; Li, H. M.; Wang, K. L.; Jin, Q. Z.; Lai, C. L.; Wang, R. X.; Cao, S. L.; Han, J.; Zhang, Z. C.; Su, J. Z. et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode. Adv. Energy Mater. 2021, 11, 2003911.

[13]

He, L. L.; Sun, W.; Sun, K. N.; Mao, Y. Q.; Deng, T. T.; Fang, L.; Wang, Z. H.; Chen, S. L. Nitrogen and sulfur co-doped hierarchically mesoporous carbon derived from biomass as high-performance anode materials for superior sodium storage. J. Power Sources 2022, 526, 231019.

[14]

Zheng, Y.; Ni, X. P.; Li, K. M.; Yu, X. H.; Song, H.; Chen, S.; Khan, N. A.; Wang, D.; Zhang, C. Multi-heteroatom-doped hollow carbon nanocages from ZIF-8@CTP nanocomposites as high-performance anodes for sodium-ion batteries. Compos. Commun. 2022, 32, 101116.

[15]

Chen, L.; Bai, L. L.; Yeo, J.; Wei, T.; Chen, W. S.; Fan, Z. J. Wood-derived carbon with selectively introduced C=O groups toward stable and high capacity anodes for sodium storage. ACS Appl. Mater. Interfaces 2020, 12, 27499–27507.

[16]

Or, T.; Gourley, S. W. D.; Kaliyappan, K.; Zheng, Y.; Li, M.; Chen, Z. W. Recent progress in surface coatings for sodium-ion battery electrode materials. Electrochem. Energy Rev. 2022, 5, 20.

[17]

Chen, H.; Sun, N.; Wang, Y. X.; Soomro, R. A.; Xu, B. One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries. Energy Stor. Mater. 2023, 56, 532–541.

[18]

Lu, Z. X.; Wang, J.; Feng, W. L.; Yin, X. P.; Feng, X. C.; Zhao, S. Y.; Li, C. X.; Wang, R. X.; Huang, Q. A.; Zhao, Y. F. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 2023, 35, 2211461.

[19]

Kamiyama, A.; Kubota, K.; Igarashi, D.; Youn, Y.; Tateyama, Y.; Ando, H.; Gotoh, K.; Komaba, S. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem., Int. Ed. 2021, 60, 5114–5120.

[20]

Hou, Z. D.; Lei, D.; Jiang, M. W.; Gao, Y. Y.; Zhang, X.; Zhang, Y.; Wang, J. G. Biomass-derived hard carbon with interlayer spacing optimization toward ultrastable Na-ion storage. ACS Appl. Mater. Interfaces 2023, 15, 1367–1375.

[21]

Lu, Y. X.; Zhao, C. L.; Qi, X. G.; Qi, Y. R.; Li, H.; Huang, X. J.; Chen, L. Q.; Hu, Y. S. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Adv. Energy Mater. 2018, 8, 1800108.

[22]

Zhao, X.; Ding, Y.; Xu, Q.; Yu, X.; Liu, Y.; Shen, H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial Coulombic efficiency: A general method. Adv. Energy Mater. 2019, 9, 1803648.

[23]

Liu, J. L.; Zhang, Y. Q.; Zhang, L.; Xie, F. X.; Vasileff, A.; Qiao, S. Z. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries. Adv. Mater. 2019, 31, 1901261.

[24]

Chen, D. Q.; Zhang, W.; Luo, K. Y.; Song, Y.; Zhong, Y. J.; Liu, Y. X.; Wang, G. K.; Zhong, B. H.; Wu, Z. G.; Guo, X. D. Hard carbon for sodium storage: Mechanism and optimization strategies toward commercialization. Energy Environ. Sci. 2021, 14, 2244–2262.

[25]

Deng, X.; Shi, W. X.; Zhong, Y. J.; Zhou, W.; Liu, M. L.; Shao, Z. P. Facile strategy to low-cost synthesis of hierarchically porous, active carbon of high graphitization for energy storage. ACS Appl. Mater. Interfaces 2018, 10, 21573–21581.

[26]

Wang, N.; Liu, Q. L.; Sun, B. Y.; Gu, J. J.; Yu, B. X.; Zhang, W.; Zhang, D. N-doped catalytic graphitized hard carbon for high-performance lithium/sodium-ion batteries. Sci. Rep. 2018, 8, 9934.

[27]

Zhang, Z. H.; Song, L. J.; Cheng, L. S.; Tan, J.; Yang, W. M. Accelerated graphitization of pan-based carbon fibers: K+-effected graphitization via laser irradiation. ACS Sustain. Chem. Eng. 2022, 10, 8086–8093.

[28]

Lv, S.; Ma, L. Y.; Shen, X. Y.; Tong, H. Potassium chloride-catalyzed growth of porous carbon nanotubes for high-performance supercapacitors. J. Alloys Compd. 2022, 906, 164242.

[29]

Li, P. Y.; Xie, H. Y.; Liu, Y. L.; Wang, J.; Xie, Y.; Hu, W. R.; Xie, T. H.; Wang, Y. B.; Zhang, Y. K. Molten salt and air induced nitrogen-containing graphitic hierarchical porous biocarbon nanosheets derived from kitchen waste hydrolysis residue for energy storage. J. Power Sources 2019, 439, 227096.

[30]

Zhao, J. H.; He, X. X.; Lai, W. H.; Yang, Z.; Liu, X. H.; Li, L.; Qiao, Y.; Xiao, Y.; Li, L.; Wu, X. Q. et al. Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries. Adv. Energy Mater. 2023, 13, 2300444.

[31]

Lu, Q.; Tian, H. Y.; Hu, B.; Jiang, X. Y.; Dong, C. Q.; Yang, Y. P. Pyrolysis mechanism of holocellulose-based monosaccharides: The formation of hydroxyacetaldehyde. J. Anal. Appl. Pyrolysis 2016, 120, 15–26.

[32]

Paine III, J. B.; Pithawalla, Y. B.; Naworal, J. D. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 2. The pyrolysis of D-glucose: General disconnective analysis and the formation of C1 and C2 carbonyl compounds by electrocyclic fragmentation mechanisms. J. Anal. Appl. Pyrolysis 2008, 82, 10–41.

[33]

Paine III, J. B.; Pithawalla, Y. B.; Naworal, J. D. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 3. The Pyrolysis of D-glucose: Formation of C3 and C4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms. J. Anal. Appl. Pyrolysis 2008, 82, 42–69.

[34]

Chen, H.; Sun, N.; Zhu, Q. Z.; Soomro, R. A.; Xu, B. Microcrystalline hybridization enhanced coal-based carbon anode for advanced sodium-ion batteries. Adv. Sci. 2022, 9, 2200023.

[35]

Zhong, L.; Zhang, W. L.; Sun, S. R.; Zhao, L.; Jian, W. B.; He, X.; Xing, Z. Y.; Shi, Z. X.; Chen, Y. N.; Alshareef, H. N. et al. Engineering of the crystalline lattice of hard carbon anodes toward practical potassium-ion batteries. Adv. Funct. Mater. 2023, 33, 2211872.

[36]

Lu, H. Y.; Ai, F. X.; Jia, Y. L.; Tang, C. Y.; Zhang, X. H.; Huang, Y. H.; Yang, H. X.; Cao, Y. L. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method. Small 2018, 14, 1802694.

[37]

Zhang, T.; Mao, J.; Liu, X. L.; Xuan, M. J.; Bi, K.; Zhang, X. L.; Hu, J. H.; Fan, J. J.; Chen, S. M.; Shao, G. S. Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries. RSC Adv. 2017, 7, 41504–41511.

[38]

Liu, H. L.; Liu, H.; Di, S. L.; Zhai, B. Y.; Li, L.; Wang, S. L. Advantageous tubular structure of biomass-derived carbon for high-performance sodium storage. ACS Appl. Energy Mater. 2021, 4, 4955–4965.

[39]

Li, Y. M.; Hu, Y. S.; Titirici, M. M.; Chen, L. Q.; Huang, X. J. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659.

[40]

Dong, R. Q.; Wu, F.; Bai, Y.; Li, Q. H.; Yu, X. Q.; Li, Y.; Ni, Q.; Wu, C. Tailoring defects in hard carbon anode towards enhanced Na storage performance. Energy Mater. Adv. 2022, 2022, 9896218.

[41]

Hou, Z. D.; Liu, H. Y.; Chen, P. P.; Wang, J. G. Nanocaging silicon nanoparticles into a porous carbon framework toward enhanced lithium-ion storage. Part. Part. Syst. Charact. 2021, 38, 2100107.

[42]

Wu, D. Y.; Sun, F.; Qu, Z. B.; Wang, H.; Lou, Z. J.; Wu, B.; Zhao, G. B. Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau capacity for high performance sodium ion batteries. J. Mater. Chem. A 2022, 10, 17225–17236.

[43]

Chen, C.; Huang, Y.; Meng, Z. Y.; Zhang, J. X.; Lu, M. W.; Liu, P. B.; Li, T. H. Insight into the rapid sodium storage mechanism of the fiber-like oxygen-doped hierarchical porous biomass derived hard carbon. J. Colloid Interface Sci. 2021, 588, 657–669.

[44]

Yi, X. L.; Li, X. H.; Zhong, J.; Wang, S. W.; Wang, Z. X.; Guo, H. J.; Wang, J. X.; Yan, G. C. Unraveling the mechanism of different kinetics performance between ether and carbonate ester electrolytes in hard carbon electrode. Adv. Funct. Mater. 2022, 32, 2209523.

[45]

Chen, F. P.; Di, Y. J.; Su, Q.; Xu, D. M.; Zhang, Y. P.; Zhou, S.; Liang, S. Q.; Cao, X. X.; Pan, A. Q. Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries. Carbon Energy 2023, 5, e191.

[46]

Yin, X. P.; Lu, Z. X.; Wang, J.; Feng, X. C.; Roy, S.; Liu, X. S.; Yang, Y.; Zhao, Y. F.; Zhang, J. J. Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 2022, 34, 2109282.

[47]

Malyi, O. I.; Sopiha, K.; Kulish, V. V.; Tan, T. L.; Manzhos, S.; Persson, C. A computational study of Na behavior on graphene. Appl. Surf. Sci. 2015, 333, 235–243.

[48]

Au, H.; Alptekin, H.; Jensen, A. C. S.; Olsson, E.; O’keefe, C. A.; Smith, T.; Crespo-Ribadeneyra, M.; Headen, T. F.; Grey, C. P.; Cai, Q. et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 2020, 13, 3469–3479.

[49]

Chen, X. Y.; Tian, J. Y.; Li, P.; Fang, Y. L.; Fang, Y. J.; Liang, X. M.; Feng, J. W.; Dong, J.; Ai, X. P.; Yang, H. X. et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism. Adv. Energy Mater. 2022, 12, 2200886.

[50]

Zhang, P.; Shu, Y. R.; Wang, Y.; Ye, J. H.; Yang, L. Simple and efficient synthesis methods for fabricating anode materials of sodium-ion batteries and their sodium-ion storage mechanism study. J. Mater. Chem. A 2023, 11, 2920–2932.

[51]

Jiang, M. W.; Hou, Z. D.; Wang, J. J.; Ren, L. B.; Zhang, Y.; Wang, J. G. Balanced coordination enables low-defect Prussian blue for superfast and ultrastable sodium energy storage. Nano Energy 2022, 102, 107708.

Nano Research
Pages 5188-5196
Cite this article:
Hou Z, Jiang M, Lei D, et al. Regulation of pseudographitic carbon domain to boost sodium energy storage. Nano Research, 2024, 17(6): 5188-5196. https://doi.org/10.1007/s12274-024-6448-1
Topics:

981

Views

8

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 26 October 2023
Revised: 17 December 2023
Accepted: 24 December 2023
Published: 01 February 2024
© Tsinghua University Press 2024
Return