AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ru-Ni alloy nanosheets as tandem catalysts for electrochemical reduction of nitrate to ammonia

Xingchao You1,2,§Jiawei Xu3,§Zechao Zhuang4,5Junkai Xia1,2Suwen Wang1,2Haiyan Wei3Yongfu Li1Yanjiang Cai1Hai Xiang2Bing Yu1,2( )
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
Jiangsu Key Laboratory of Numerical Simulation of Large Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Department of Chemical Engineering, Columbia University, New York, NY 10027, USA

§ Xingchao You and Jiawei Xu contributed equally to this work.

Show Author Information

Graphical Abstract

The Ru-Ni alloy nanosheets-based electrocatalytic nitrate reduction reaction proceeds via a two-stage pathway where HONO acts as migration intermediate. Ru (002) surface enhances the adsorption of HNO3 and the desorption of migration intermediate, while Ni (111) surface increases the utilization of migration intermediate and requires lower energy consumption of NH3 desorption.

Abstract

Developing electrocatalysts that exhibit both high activity and ammonia selectivity for nitrate reduction is a significant and demanding challenge, primarily due to the complex nature of the multiple-electron reduction process involved. An encouraging approach involves coupling highly active precious metals with transition metals to enhance catalytic performance through synergy. Here, we report a ruthenium-nickel alloy catalyst with nanosheets (Ru-Ni NSs) structure that achieves a remarkable ammonia Faradaic efficiency of approximately 95.93%, alongside a yield rate of up to 6.11 g·h−1·cm−2. Moreover, the prepared Ru-Ni NSs exhibit exceptional stability during continuous nitrate reduction in a flow reactor for 100 h, maintaining a Faradaic efficiency of approximately 90% and an ammonia yield of 37.4 mg·L−1·h−1 using 0.05 M nitrate alkaline electrolyte. Mechanistic studies reveal that the catalytic process follows a two-step pathway, in which HONO serves as a migration intermediate. The presence of a partially oxidized Ru (002) surface enhances the adsorption of nitrate and facilitates the release of the migration intermediate by adjusting the strength of the electrostatic and covalent interactions between the adsorbate and the surface, respectively. On the other hand, the Ni (111) surface promotes the utilization of the migration intermediate and requires less energy for NH3 desorption. This tandem process contributes to a high catalytic activity of Ru-Ni NSs towards nitrate reduction.

References

[1]

Zhao, Y. L.; Liu, Y.; Zhang, Z. J.; Mo, Z. K.; Wang, C. Y.; Gao, S. Y. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124.

[2]

Zhang, Y. Y.; Wang, Y.; Han, L.; Wang, S. N.; Cui, T. D.; Yan, Y. F.; Xu, M.; Duan, H. H.; Kuang, Y.; Sun, X. M. Nitrite electroreduction to ammonia promoted by molecular carbon dioxide with near-unity faradaic efficiency. Angew. Chem., Int. Ed. 2023, 62, e202213711.

[3]

Iriawan, H.; Andersen, S. Z.; Zhang, X. L.; Comer, B. M.; Barrio, J.; Chen, P.; Medford, A. J.; Stephens, I. E. L.; Chorkendorff, I.; Shao-Horn, Y. Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Primers 2021, 1, 56.

[4]

Sun, J. Y.; Garg, S.; Xie, J. Z.; Zhang, C. Y.; Waite, T. D. Electrochemical reduction of nitrate with simultaneous ammonia recovery using a flow cathode reactor. Environ. Sci. Technol. 2022, 56, 17298–17309.

[5]

Niu, Z. D.; Fan, S. Y.; Li, X. Y.; Duan, J.; Chen, A. C. Interfacial engineering of CoMn2O4/NC induced electronic delocalization boosts electrocatalytic nitrogen oxyanions reduction to ammonia. Appl. Catal. B: Environ. 2023, 322, 122090.

[6]

Wang, J.; Feng, T.; Chen, J. X.; Ramalingam, V.; Li, Z. X.; Kabtamu, D. M.; He, J. H.; Fang, X. S. Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 2021, 86, 106088.

[7]

Murphy, E.; Liu, Y. C.; Matanovic, I.; Guo, S. Y.; Tieu, P.; Huang, Y.; Ly, A.; Das, S.; Zenyuk, I.; Pan, X. Q. et al. Highly durable and selective Fe-and Mo-based atomically dispersed electrocatalysts for nitrate reduction to ammonia via distinct and synergized NO2- pathways. ACS Catal. 2022, 12, 6651–6662.

[8]

Yu, Y.; Li, Y.; Fang, Y.; Wen, L. L.; Tu, B. B.; Huang, Y. Recent advances of ammonia synthesis under ambient conditions over metal-organic framework based electrocatalysts. Appl. Catal. B: Environ. 2024, 340, 123161.

[9]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[10]
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res., in press, DOI: 10.1007/s12274-023-6037-8.
[11]

Qiu, W. X.; Xie, M. H.; Wang, P. F.; Gao, T. T.; Li, R.; Xiao, D.; Jin, Z. Y.; Li, P. P. Size-defined Ru nanoclusters supported by TiO2 nanotubes enable low-concentration nitrate electroreduction to ammonia with suppressed hydrogen evolution. Small 2023, 19, 2300437.

[12]

Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energ. Environ. Sci. 2021, 14, 3522–3531.

[13]

Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 2015, 5, 5207–5234.

[14]

Cui, X.; Lei, S.; Wang, A. C.; Gao, L. K.; Zhang, Q.; Yang, Y. K.; Lin, Z. Q. Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy 2020, 70, 104525.

[15]

Gao, W. S.; Xie, K. F.; Xie, J.; Wang, X. M.; Zhang, H.; Chen, S. Q.; Wang, H.; Li, Z. L.; Li, C. Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia. Adv. Mater. 2023, 35, 2202952.

[16]

Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From nano-to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

[17]

Kwon, T.; Yu, A.; Kim, S. J.; Kim, M. H.; Lee, C.; Lee, Y. Au-Ru alloy nanofibers as a highly stable and active bifunctional electrocatalyst for acidic water splitting. Appl. Surf. Sci. 2021, 563, 150293.

[18]

Liu, S. C.; Liu, Z. Y.; Wang, Z.; Wu, Y. M.; Yuan, P. Characterization and study on performance of the Ru-La-B/ZrO2 amorphous alloy catalysts for benzene selective hydrogenation to cyclohexene under pilot conditions. Chem. Eng. J. 2008, 139, 157–164.

[19]

Wang, Y. L.; Yin, H. B.; Dong, F.; Zhao, X. G.; Qu, Y. K.; Wang, L. X.; Peng, Y.; Wang, D. S.; Fang, W.; Li, J. H. N-coordinated Cu-Ni dual-single-atom catalyst for highly selective electrocatalytic reduction of nitrate to ammonia. Small 2023, 19, 2207695.

[20]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[21]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

[22]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[23]

Ernzerhof, M.; Scuseria, G. E. Assessment of the perdew-burke-ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.

[24]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[25]

Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 2016, 116, 5105–5154.

[26]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[27]

Chen, H. Y.; Niu, H. J.; Ma, X. H.; Feng, J. J.; Weng, X. X.; Huang, H.; Wang, A. J. Flower-like platinum-cobalt-ruthenium alloy nanoassemblies as robust and highly efficient electrocatalyst for hydrogen evolution reaction. J. Colloid Interf. Sci. 2020, 561, 372–378.

[28]

Anouar, A.; García-Aboal, R.; Atienzar, P.; Franconetti, A.; Katir, N.; El Kadib, A.; Primo, A.; Garcia, H. Remarkable activity of 002 facet of ruthenium nanoparticles grown on graphene films on the photocatalytic CO2 methanation. Adv. Sustain. Syst. 2022, 6, 2100487.

[29]

Zhang, X. J.; Li, Z. Q.; Sun, X. P.; Wei, L. Z.; Niu, H. L.; Chen, S.; Chen, Q. W.; Wang, C. L.; Zheng, F. C. Regulating the surface electronic structure of RuNi alloys for boosting alkaline hydrogen oxidation electrocatalysis. ACS Mater. Lett. 2022, 4, 2097–2105.

[30]

Liu, W.; Feng, H. S.; Yang, Y. S.; Niu, Y. M.; Wang, L.; Yin, P.; Hong, S.; Zhang, B. S.; Zhang, X.; Wei, M. Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nat. Commun. 2022, 13, 3188.

[31]

Fan, L.; Shen, H. M.; Ji, D. X.; Xing, Y.; Tao, L.; Sun, Q.; Guo, S. J. Biaxially compressive strain in Ni/Ru core/shell nanoplates boosts Li-CO2 batteries. Adv. Mater. 2022, 34, 2204134.

[32]

Flores, K.; Cerrón-Calle, G. A.; Valdes, C.; Atrashkevich, A.; Castillo, A.; Morales, H.; Parsons, J. G.; Garcia-Segura, S.; Gardea-Torresdey, J. L. Outlining key perspectives for the advancement of electrocatalytic remediation of nitrate from polluted waters. ACS EST Eng. 2022, 2, 746–768.

[33]

Zhou, J.; Wen, M.; Huang, R.; Wu, Q. S.; Luo, Y. X.; Tian, Y. K.; Wei, G. F.; Fu, Y. Q. Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2023, 16, 2611–2620.

[34]

Xue, Y. R.; Shi, L.; Liu, X. R.; Fang, J. J.; Wang, X. D.; Setzler, B. P.; Zhu, W.; Yan, Y. S.; Zhuang, Z. B. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun. 2020, 11, 5651.

[35]

Liu, Y.; Zhang, L.; Feng, S. X.; Chen, X. Promoting effect of Ni on the catalytic production of alanine from lactic acid over RuNi/AC catalyst. Ind. Eng. Chem. Res. 2022, 61, 10285–10293.

[36]

Liu, R.; Sun, M. Z.; Liu, X. J.; Lv, Z. H.; Yu, X. Y.; Wang, J. M.; Liu, Y. R.; Li, L. H.; Feng, X.; Yang, W. X. et al. Enhanced metal-support interactions boost the electrocatalytic water splitting of supported Ruthenium nanoparticles on a Ni3N/NiO heterojunction at industrial current density. Angew. Chem. 2023, 135, e202312644.

[37]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to Sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[38]

Wu, Q. L.; Luo, M.; Han, J. H.; Peng, W.; Zhao, Y.; Chen, D. C.; Peng, M.; Liu, J.; de Groot, F. M. F.; Tan, Y. W. Identifying electrocatalytic sites of the nanoporous copper-ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 2020, 5, 192–199.

[39]

Jeong, G. H.; Tan, Y. C.; Song, J. T.; Lee, G. Y.; Lee, H. J.; Lim, J.; Jeong, H. Y.; Won, S.; Oh, J.; Kim, S. O. Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction. Chem. Eng. J. 2021, 426, 131063.

[40]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[41]

Grdeń, M.; Alsabet, M.; Jerkiewicz, G. Surface science and electrochemical analysis of nickel foams. ACS Appl. Mater. Interfaces 2012, 4, 3012–3021.

[42]

Bai, X.; Pang, Q. Q.; Du, X.; Yi, S. S.; Zhang, S.; Qian, J.; Yue, X. Z.; Liu, Z. Y. Integrating RuNi alloy in S-doped defective carbon for efficient hydrogen evolution in both acidic and alkaline media. Chem. Eng. J. 2021, 417, 129319.

[43]

Zhang, Z. D.; Wang, J.; Ge, X. H.; Wang, S. L.; Li, A.; Li, R. Z.; Shen, J.; Liang, X.; Gan, T.; Han, X. D. et al. Mixed plastics wastes upcycling with high-stability single-atom Ru catalyst. J. Am. Chem. Soc. 2023, 145, 22836–22844.

[44]

Yin, Q.; Shen, T. Y.; Li, J. H.; Ning, C. J.; Xue, Y.; Chen, G. B.; Xu, M.; Wang, F. L.; Song, Y. F.; Zhao, Y. F. et al. Solar-driven dry reforming of methane using RuNi single-atom alloy catalyst coupled with thermal decomposition of carbonates. Chem. Eng. J. 2023, 470, 144416.

[45]

Mao, J. J.; He, C. T.; Pei, J. J.; Chen, W. X.; He, D. S.; He, Y. Q.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.

[46]
Zhu, Z. X.; Lin, Y. X.; Fang, P.; Wang, M. S.; Zhu, M. Z.; Zhang, X. Y.; Liu, J. S.; Hu, J. G.; Xu, X. Y. Orderly nanodendritic nickel substitute for raney nickel catalyst improving alkali water electrolyzer. Adv. Mater., in press, DOI: 10.1002/adma.202307035.
[47]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[48]

Li, T. S.; Tang, C.; Guo, H.; Wu, H. R.; Duan, C.; Wang, H.; Zhang, F. Y.; Cao, Y. H.; Yang, G. D.; Zhou, Y. In situ growth of Fe2O3 nanorod arrays on carbon cloth with rapid charge transfer for efficient nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 49765–49773.

[49]

Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.

[50]

Zhou, J. J.; Pan, F.; Yao, Q. F.; Zhu, Y. Q.; Ma, H. R.; Niu, J. F.; Xie, J. P. Achieving efficient and stable electrochemical nitrate removal by in-situ reconstruction of Cu2O/Cu electroactive nanocatalysts on Cu foam. Appl. Catal. B: Environ. 2022, 317, 121811.

[51]

Deng, X. H.; Yang, Y. P.; Wang, L.; Fu, X. Z.; Luo, J. L. Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A·cm−2. Adv. Sci. 2021, 8, 2004523.

[52]

Gao, Z.; Lai, Y. L.; Tao, Y.; Xiao, L. H.; Zhang, L. X.; Luo, F. Constructing well-defined and robust Th-MOF-supported single-site copper for production and storage of ammonia from electroreduction of nitrate. ACS Cent. Sci. 2021, 7, 1066–1072.

[53]

Chen, J. Q.; Ye, X. X.; Zhou, D.; Chen, Y. X. Roles of copper in nitrate reduction at copper-modified Ru/C catalysts. J. Phys. Chem. C 2023, 127, 2918–2928.

[54]

Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

[55]

Liu, Q.; Liu, Q.; Xie, L. S.; Ji, Y. Y.; Li, T. S.; Zhang, B.; Li, N.; Tang, B.; Liu, Y.; Gao, S. Y. et al. High-performance electrochemical nitrate reduction to ammonia under ambient conditions using a FeOOH nanorod catalyst. ACS Appl. Mater. Interfaces 2022, 14, 17312–17318.

[56]

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

[57]

Liu, H. Z.; Park, J.; Chen, Y. F.; Qiu, Y.; Cheng, Y.; Srivastava, K.; Gu, S.; Shanks, B. H.; Roling, L. T.; Li, W. Z. Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia. ACS Catal. 2021, 11, 8431–8442.

[58]

Daiyan, R.; Tran-Phu, T.; Kumar, P.; Iputera, K.; Tong, Z. Z.; Leverett, J.; Khan, M. H. A.; Esmailpour, A. A.; Jalili, A.; Lim, M. et al. Nitrate reduction to ammonium: From CuO defect engineering to waste NO x -to-NH3 economic feasibility. Energy Environ. Sci. 2021, 14, 3588–3598.

[59]

Du, Z. Z.; Yang, K.; Du, H. F.; Li, B. X.; Wang, K.; He, S.; Wang, T. F.; Ai, W. Facile and scalable synthesis of self-supported Zn-doped CuO nanosheet arrays for efficient nitrate reduction to ammonium. ACS Appl. Mater. Interfaces 2023, 15, 5172–5179.

[60]

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

[61]

Wang, S. W.; Song, C. F.; Cai, Y. J.; Li, Y. F.; Jiang, P. K.; Li, H.; Yu, B.; Ma, T. Y. Interfacial polarization triggered by covalent-bonded MXene and black phosphorus for enhanced electrochemical nitrate to ammonia conversion. Adv. Energy Mater. 2023, 13, 2301136.

[62]

Zhang, Y. Z.; Chen, X.; Zhang, S. Y.; Yin, L. F.; Yang, Y. Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm. Chem. Eng. J. 2020, 401, 126033.

[63]

Zhang, Y. Z.; Chen, X.; Wang, W. L.; Yin, L. F.; Crittenden, J. C. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl. Catal. B: Environ. 2022, 310, 121346.

[64]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[65]

Xu, G. R.; Li, H.; Bati, A. S. R.; Bat-Erdene, M.; Nine, J.; Losic, D.; Chen, Y.; Shapter, J. G.; Batmunkh, M.; Ma, T. Y. Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis. J. Mater. Chem. A 2020, 8, 15875–15883.

[66]

He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.

[67]

Qu, Y. B.; Dai, T. Y.; Cui, Y. H.; Zhang, Y. Z.; Wang, Z. L.; Jiang, Q. Tailoring electronic structure of copper nanosheets by silver doping toward highly efficient electrochemical reduction of nitrogen to ammonia. Chem. Eng. J. 2022, 433, 133752.

[68]

Zeng, H. B.; Zhang, G.; Ji, Q. H.; Liu, H. J.; Hua, X.; Xia, H. L.; Sillanpää, M.; Qu, J. H. pH-independent production of hydroxyl radical from atomic H*-mediated electrocatalytic H2O2 reduction: A green Fenton process without byproducts. Environ. Sci. Technol. 2020, 54, 14725–14731.

[69]

Wang, Y. T.; Li, H. J.; Zhou, W.; Zhang, X.; Zhang, B.; Yu, Y. F. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew. Chem., Int. Ed. 2022, 134, e202202604.

Nano Research
Pages 4815-4824
Cite this article:
You X, Xu J, Zhuang Z, et al. Ru-Ni alloy nanosheets as tandem catalysts for electrochemical reduction of nitrate to ammonia. Nano Research, 2024, 17(6): 4815-4824. https://doi.org/10.1007/s12274-024-6450-7
Topics:

671

Views

7

Crossref

10

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 31 October 2023
Revised: 17 December 2023
Accepted: 24 December 2023
Published: 01 February 2024
© Tsinghua University Press 2024
Return