AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Topology modulation of tetraphenylethylene graphdiyne at a liquid–liquid interface

Tingting Xu1Pei Wen Ng1Shaofei Wu1Danjun Fu1Yunhan Ma1Yao Liu2Lidao Li2Xiaofei Zhang2( )Jun Zhu2( )
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
Show Author Information

Graphical Abstract

We introduce a new strategy for topology control in synthesizing graphdiyne derivatives from low-symmetry tetrakis(4-ethynylphenyl)ethene precursor, offering insights for obtaining topologically pure framework materials in cases where different topologies are possible in practical synthesis.

Abstract

Monomers with low symmetries can form different topological structures in the preparation of organic two-dimensional (2D) materials. However, it remains challenging to modulate the topologies in practical synthesis. Leveraging theoretical insights into the formation energy of potential structural configurations, we report the topology modulation of a graphdiyne (GDY) derivative constructed from two-fold symmetric tetrakis(4-ethynylphenyl)ethene precursor by changing solvent combinations in a liquid–liquid interfacial system. An aqueous–organic (water–dichloromethane) interface afforded GDY with a kagome topology while a rhombic topology was formed at an organic–organic (hexane–acetonitrile) interface. A comprehensive evaluation of their structures and optoelectronic properties was conducted through various characterization techniques and theoretical computations. Our study provided new insights to modulate the topology of not only GDY but also other framework structures and obtain topologically pure materials in situations where different topologies are possible during practical synthesis.

Electronic Supplementary Material

Download File(s)
12274_2024_6457_MOESM1_ESM.pdf (2.7 MB)

References

[1]

Haley, M. M.; Brand, S. C.; Pak, J. J. Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures. Angew. Chem., Int. Ed. 1997, 36, 836–838.

[2]

Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908–936.

[3]

Fang, Y.; Liu, Y. X.; Qi, L.; Xue, Y. R.; Li, Y. L. 2D Graphdiyne: An emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681–2709.

[4]

Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

[5]

Yu, H. D.; Xue, Y. R.; Hui, L.; Zhang, C.; Li, Y. J.; Zuo, Z. C.; Zhao, Y. J.; Li, Z. B.; Li, Y. L. Efficient hydrogen production on a 3D flexible heterojunction material. Adv. Mater. 2018, 30, 1707082.

[6]

Ma, Z. X.; Sheng, L. P.; Wang, X. W.; Yuan, W. T.; Chen, S. Y.; Xue, W.; Han, G. R.; Zhang, Z.; Yang, H. S.; Lu, Y. H. et al. Oxide catalysts with ultrastrong resistance to SO2 deactivation for removing nitric oxide at low temperature. Adv. Mater. 2019, 31, e1903719.

[7]

Fang, Y.; Xue, Y. R.; Li, Y. J.; Yu, H. D.; Hui, L.; Liu, Y. X.; Xing, C. Y.; Zhang, C.; Zhang, D. Y.; Wang, Z. Q. et al. Graphdiyne interface engineering: Highly active and selective ammonia synthesis. Angew. Chem., Int. Ed. 2020, 59, 13021–13027.

[8]

Zhang, D. Y.; Xue, Y. R.; Zheng, X. C.; Zhang, C.; Li, Y. L. Multi-heterointerfaces for selective and efficient urea production. Natl. Sci. Rev. 2023, 10, nwac209.

[9]

Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2018, 9, 1460.

[10]

Gao, Y.; Xue, Y. R.; He, F.; Li, Y. L. Controlled growth of a high selectivity interface for seawater electrolysis. Proc. Natl. Acad. Sci. USA 2022, 119, e2206946119.

[11]

Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

[12]

Du, Y. C.; Zheng, X. C.; Xue, Y. R.; Li, Y. L. Bismuth/graphdiyne heterostructure for electrocatalytic conversion of CO2 to formate. Chem. Res. Chin. Univ. 2022, 38, 1380–1386.

[13]

Rong, X.; Lu, X. L.; Lu, T. B. Three-dimensional pyrenyl graphdiyne supported Pd nanoparticle as an efficient and easily recyclable catalyst for reduction of 4-nitrophenol. Chem. Res. Chin. Univ. 2021, 37, 1296–1300.

[14]

Parvin, N.; Jin, Q.; Wei, Y. Z.; Yu, R. B.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L. H.; Zhang, H.; Gao, M. Y. et al. Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection. Adv. Mater. 2017, 29, 1606755.

[15]

Kaur, H.; Thakur, V. K.; Siwal, S. S. Recent advancements in graphdiyne-based nano-materials for biomedical applications. Mater. Today Proc. 2022, 56, 112–120.

[16]

Xiao, J. Y.; Shi, J. J.; Liu, H. B.; Xu, Y. Z.; Lv, S. T.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Li, Y. L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401943.

[17]

Jin, Z. W.; Yuan, M. J.; Li, H.; Yang, H.; Zhou, Q.; Liu, H. B.; Lan, X. Z.; Liu, M. X.; Wang, J. Z.; Sargent, E. H. et al. Graphdiyne: An efficient hole transporter for stable high-performance colloidal quantum dot solar cells. Adv. Funct. Mater. 2016, 26, 5284–5289.

[18]

Wu, G. B.; Li, X.; Zhou, J. Y.; Zhang, J. Q.; Zhang, X. N.; Leng, X. Y.; Wang, P. J.; Chen, M.; Zhang, D. Y.; Zhao, K. K. et al. Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Adv. Mater. 2019, 31, 1903889.

[19]

Luan, X. Y.; Qi, L.; Zheng, Z. Q.; Gao, Y. Q.; Xue, Y. R.; Li, Y. L. Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202215968.

[20]

Zhang, C.; Li, Y. L. Graphdiyne based atomic catalyst: An emerging star for energy conversion. Chem. Res. Chin. Univ. 2021, 37, 1149–1157.

[21]

Qiu, H.; Xue, M. M.; Shen, C.; Zhang, Z. H.; Guo, W. L. Graphynes for water desalination and gas separation. Adv. Mater. 2019, 31, 1803772.

[22]

Gao, X. Y.; Li, J. F.; Zuo, Z. C. Advanced electrochemical energy storage and conversion on graphdiyne interface. Nano Res. Energy 2022, 1, e9120036.

[23]

Lan, W. F.; Hu, R. F.; Huang, D. R.; Dong, X.; Shen, G. Y.; Chang, S.; Dai, D. S. Palladium nanoparticles/graphdiyne oxide nanocomposite with excellent peroxidase-like activity and its application for glutathione detection. Chem. Res. Chin. Univ. 2022, 38, 529–534.

[24]

Guo, J.; Shi, R. C.; Wang, R.; Wang, Y. Z.; Zhang, F.; Wang, C.; Chen, H. L.; Ma, C. Y.; Wang, Z. L.; Ge, Y. Q. et al. Graphdiyne-polymer nanocomposite as a broadband and robust saturable absorber for ultrafast photonics. Laser Photon. Rev. 2020, 14, 1900367.

[25]

Li, Y. B.; Yang, H.; Wang, G. R.; Ma, B. Z.; Jin, Z. L. Distinctive improved synthesis and application extensions graphdiyne for efficient photocatalytic hydrogen evolution. ChemCatChem 2020, 12, 1985–1995.

[26]

Klappenberger, F.; Zhang, Y. Q.; Björk, J.; Klyatskaya, S.; Ruben, M.; Barth, J. V. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes. Acc. Chem. Res. 2015, 48, 2140–2150.

[27]

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

[28]

Gao, X.; Zhu, Y. H.; Yi, D.; Zhou, J. Y.; Zhang, S. S.; Yin, C.; Ding, F.; Zhang, S. Q.; Yi, X. H.; Wang, J. Z. et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 2018, 4, eaat6378.

[29]

Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139, 3145–3152.

[30]

Kong, Y.; Li, J. Q.; Zeng, S.; Yin, C.; Tong, L. M.; Zhang, J. Bridging the gap between reality and ideality of graphdiyne: The advances of synthetic methodology. Chem 2020, 6, 1933–1951.

[31]

Niu, G. S.; Wang, Y. D.; Yang, Z. C.; Cao, S. K.; Liu, H. B.; Wang, J. Z. Graphdiyne and its derivatives as efficient charge reservoirs and transporters in semiconductor devices. Adv. Mater. 2023, 35, 2212159.

[32]

Yang, Z.; Song, Y. W.; Zhang, C. F.; He, J. J.; Li, X. D.; Wang, X.; Wang, N.; Li, Y. L.; Huang, C. S. Porous 3D silicon-diamondyne blooms excellent storage and diffusion properties for Li, Na, and K Ions. Adv. Energy Mater. 2021, 11, 2101197.

[33]

Zhang, T.; Hou, Y.; Dzhagan, V.; Liao, Z. Q.; Chai, G. L.; Löffler, M.; Olianas, D.; Milani, A.; Xu, S. Q.; Tommasini, M. et al. Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. Nat. Commun. 2018, 9, 1140.

[34]

Zhang, Y. Q.; Kepčija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Björk, J.; Klyatskaya, S.; Klappenberger, F. et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 2012, 3, 1286.

[35]

Liu, B. K.; Xu, L. K.; Zhao, Y. S.; Du, J.; Yang, N. L.; Wang, D. Heteroatoms in graphdiyne for catalytic and energy-related applications. J. Mater. Chem. A. 2021, 9, 19298–19316.

[36]

Li, J. Q.; Xiong, Y.; Xie, Z. Q.; Gao, X.; Zhou, J. Y.; Yin, C.; Tong, L. M.; Chen, C. G.; Liu, Z. F.; Zhang, J. Template synthesis of an ultrathin β-graphdiyne-like film using the eglinton coupling reaction. ACS Appl. Mater. Interfaces 2019, 11, 2734–2739.

[37]

La, D. D.; Bhosale, S. V.; Jones, L. A.; Bhosale, S. V. Tetraphenylethylene-based AIE-active probes for sensing applications. ACS Appl. Mater. Interfaces 2018, 10, 12189–12216.

[38]

Wang, H.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z. AIE luminogens: Emission brightened by aggregation. Mater. Today 2015, 18, 365–377.

[39]

Zhao, Q. L.; Sun, J. Z. Red and near infrared emission materials with AIE characteristics. J. Mater. Chem. C 2016, 4, 10588–10609.

[40]

Liu, Y.; Xie, X. Y.; Cheng, C.; Shao, Z. S.; Wang, H. S. Strategies to fabricate metal-organic framework (MOF)-based luminescent sensing platforms. J. Mater. Chem. C 2019, 7, 10743–10763.

[41]

He, X.; Bi, H.; Wei, P. F. Luminescent organic molecular frameworks from tetraphenylethylene-based building blocks. J. Mater. Chem. C 2023, 11, 3675–3691.

[42]

Peng, Y. W.; Li, L. X.; Zhu, C. Z.; Chen, B.; Zhao, M. T.; Zhang, Z. C.; Lai, Z. C.; Zhang, X.; Tan, C. L.; Han, Y. et al. Intramolecular hydrogen bonding-based topology regulation of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 13162–13169.

[43]

Zhao, Z. Q.; Zhao, J. W.; Zhang, S. M.; Zhang, G.; Chen, W. B.; Yang, Z. F.; Zhang, T.; Chen, L. Topology modulation of 2D covalent organic frameworks via a “Two-in-one” strategy. Nanoscale 2021, 13, 19385–19390.

[44]

Xing, G. L.; Zheng, W. H.; Gao, L.; Zhang, T.; Wu, X. W.; Fu, S.; Song, X. Y.; Zhao, Z. Q.; Osella, S.; Martínez-Abadía, M. et al. Nonplanar rhombus and kagome 2D covalent organic frameworks from distorted aromatics for electrical conduction. J. Am. Chem. Soc. 2022, 144, 5042–5050.

[45]

Wu, S. F.; Li, M. C.; Phan, H.; Wang, D. G.; Herng, T. S.; Ding, J.; Lu, Z. G.; Wu, J. S. Toward two-dimensional π-conjugated covalent organic radical frameworks. Angew. Chem., Int. Ed. 2018, 57, 8007–8011.

[46]

Li, C.; Lu, X. L.; Han, Y. Y.; Tang, S. F.; Ding, Y.; Liu, R. R.; Bao, H. H.; Li, Y. L.; Luo, J.; Lu, T. B. Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Res. 2018, 11, 1714–1721.

[47]

Tieke, B.; Lieser, G.; Wegner, G. Polymerization of diacetylenes in multilayers. J. Polymer Sci. Polymer Chem. Ed. 2003, 17, 1631–1644.

[48]

Kim, J.; Cho, S.; Cho, B. K. An unusual stacking transformation in liquid-crystalline columnar assemblies of clicked molecular propellers with tunable light emissions. Chemistry 2014, 20, 12734–12739.

[49]

Santos, E. M.; Sheng, W.; Salmani, R.E.; Nick, S. T.; Ghanbarpour, A.; Gholami, H.; Vasileiou, C.; Geiger, J. H.; Borhan, B. Design of large stokes shift fluorescent proteins based on excited state proton transfer of an engineered photobase. J. Am. Chem Soc. 2021, 143, 15091–15102.

[50]

Dalapati, S.; Gu, C.; Jiang, D. L. Luminescent porous polymers based on aggregation-induced mechanism: Design, synthesis and functions. Small 2016, 12, 6513–6527.

Nano Research
Pages 4661-4667
Cite this article:
Xu T, Ng PW, Wu S, et al. Topology modulation of tetraphenylethylene graphdiyne at a liquid–liquid interface. Nano Research, 2024, 17(6): 4661-4667. https://doi.org/10.1007/s12274-024-6457-0
Topics:

509

Views

2

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 07 November 2023
Revised: 19 December 2023
Accepted: 28 December 2023
Published: 31 January 2024
© Tsinghua University Press 2024
Return