Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The formation and evolution dynamics of charge separation (CS) in a complex of CsPbBr3 quantum dots (QDs) and 1,4-benzoquinone (BQ) molecules are measured with a high-sensitive pump-orientation-probe technique by which spin signals of the CS state are monitored. An extraordinarily long-lasting CS is observed, with a characteristic time being up to a dozen days under ambient conditions, due to electron transferring from QDs to BQ molecules. Upon the long-lived CS, spin coherences of both electrons and holes are detected at room temperature, with a spin dephasing time of 420 and 26 ps, respectively. The long-lived CS and spin coherence have important implications for applications of perovskite nanomaterials in photocatalysis, photovoltaics, and spintronics.
Li, G. R.; Rivarola, F. W. R.; Davis, N. J. L. K.; Bai, S.; Jellicoe, T. C.; de la Peña, F.; Hou, S. C.; Ducati, C.; Gao, F.; Friend, R. H. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 2016, 28, 3528–3534.
Meyns, M.; Perálvarez, M.; Heuer-Jungemann, A.; Hertog, W.; Ibáñez, M.; Nafria, R.; Genç, A.; Arbiol, J.; Kovalenko, M. V.; Carreras, J. et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl. Mater. Interfaces 2016, 8, 19579–19586.
Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.
Zhang, X. Y.; Lin, H.; Huang, H.; Reckmeier, C.; Zhang, Y.; Choy, W. C. H.; Rogach, A. L. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 2016, 16, 1415–1420.
Veldhuis, S. A.; Ng, Y. F.; Ahmad, R.; Bruno, A.; Jamaludin, N. F.; Damodaran, B.; Mathews, N.; Mhaisalkar, S. G. Crown ethers enable room-temperature synthesis of CsPbBr3 quantum dots for light-emitting diodes. ACS Energy Lett. 2018, 3, 526–531.
Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.
Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.
Akkerman, Q. A.; Gandini, M.; Di Stasio, F.; Rastogi, P.; Palazon, F.; Bertoni, G.; Ball, J. M.; Prato, M.; Petrozza, A.; Manna, L. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2017, 2, 16194.
Zhao, Q.; Hazarika, A.; Chen, X. H.; Harvey, S. P.; Larson, B. W.; Teeter, G. R.; Liu, J.; Song, T.; Xiao, C. X.; Shaw, L. et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 2019, 10, 2842
Kong, Z. C.; Liao, J. F.; Dong, Y. J.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662.
Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.
Gao, G.; Xi, Q. Y.; Zhou, H.; Zhao, Y. X.; Wu, C. Q.; Wang, L. D.; Guo, P. R.; Xu, J. W. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032–12038.
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.
Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.
Kang, J.; Wang, L. W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 489–493.
Dirin, D. N.; Protesescu, L.; Trummer, D.; Kochetygov, I. V.; Yakunin, S.; Krumeich, F.; Stadie, N. P.; Kovalenko, M. V. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 2016, 16, 5866–5874.
Yettapu, G. R.; Talukdar, D.; Sarkar, S.; Swarnkar, A.; Nag, A.; Ghosh, P.; Mandal, P. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 2016, 16, 4838–4848.
Yanagi, R.; Zhao, T. S.; Solanki, D.; Pan, Z. H.; Hu, S. Charge separation in photocatalysts: Mechanisms, physical parameters, and design principles. ACS Energy Lett. 2022, 7, 432–452.
Hutter, E. M.; Sutton, R. J.; Chandrashekar, S.; Abdi-Jalebi, M.; Stranks, S. D.; Snaith, H. J.; Savenije, T. J. Vapour-deposited cesium lead iodide perovskites: Microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett. 2017, 2, 1901–1908.
Huang, H. W.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B. J.; Steele, J. A. Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Lett. 2020, 5, 1107–1123.
DuBose, J. T.; Kamat, P. V. Efficacy of perovskite photocatalysis: Challenges to overcome. ACS Energy Lett. 2022, 7, 1994–2011.
Wu, K. F.; Liang, G. J.; Shang, Q. Y.; Ren, Y. P.; Kong, D. G.; Lian, T. Q. Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 2015, 137, 12792–12795.
Kobosko, S. M.; DuBose, J. T.; Kamat, P. V. Perovskite photocatalysis. Methyl viologen induces unusually long-lived charge carrier separation in CsPbBr3 nanocrystals. ACS Energy Lett. 2020, 5, 221–223.
Luo, X.; Liang, G. J.; Wang, J. H.; Liu, X.; Wu, K. F. Picosecond multi-hole transfer and microsecond charge-separated states at the perovskite nanocrystal/tetracene interface. Chem. Sci. 2019, 10, 2459–2464.
Wang, K.; Lu, H. P.; Zhu, X. L.; Lin, Y. X.; Beard, M. C.; Yan, Y.; Chen, X. H. Ultrafast reaction mechanisms in perovskite based photocatalytic C–C coupling. ACS Energy Lett. 2020, 5, 566–571.
Mandal, S.; George, L.; Tkachenko, N. V. Charge transfer dynamics in CsPbBr3 perovskite quantum dots-anthraquinone/fullerene (C60) hybrids. Nanoscale 2019, 11, 862–869.
DuBose, J. T.; Kamat, P. V. Probing perovskite photocatalysis. Interfacial electron transfer between CsPbBr3 and ferrocene redox couple. J. Phys. Chem. Lett. 2019, 10, 6074–6080.
Feng, D. H.; Yakovlev, D. R.; Dubertret, B.; Bayer, M. Charge separation dynamics in CdSe/CdS core/shell nanoplatelets addressed by coherent electron spin precession. ACS Nano 2020, 14, 7237–7244.
Feng, D. H.; Yakovlev, D. R.; Pavlov, V. V.; Rodina, A. V.; Shornikova, E. V.; Mund, J.; Bayer, M. Dynamic evolution from negative to positive photocharging in colloidal CdS quantum dots. Nano Lett. 2017, 17, 2844–2851.
Li, X.; Feng, D. H.; Tong, H. F.; Jia, T. Q.; Deng, L.; Sun, Z. R.; Xu, Z. Z. Hole surface trapping dynamics directly monitored by electron spin manipulation in CdS nanocrystals. J. Phys. Chem. Lett. 2014, 5, 4310–4316.
Chen, C.; Liang, P.; Hu, R. R.; Jia, T. Q.; Sun, Z. R.; Feng, D. H. Pump-orientation-probe technique and its applications. Acta Phys. Sin. 2018, 67, 097201.
Huxter, V. M.; Kovalevskij, V.; Scholes, G. D. Dynamics within the exciton fine structure of colloidal CdSe quantum dots. J. Phys. Chem. B 2005, 109, 20060–20063.
Wu, Z.; Zhang, Y. Y.; Hu, R. R.; Jiang, M. Z.; Liang, P.; Yang, Q.; Deng, L.; Jia, T. Q.; Sun, Z. R.; Feng, D. H. Hole-acceptor-manipulated electron spin dynamics in CdSe colloidal quantum dots. J. Phys. Chem. Lett. 2021, 12, 2126–2132.
Zhang, Y. Y.; Jiang, M. Z.; Wu, Z.; Yang, Q.; Men, Y. M.; Cheng, L.; Liang, P.; Hu, R. R.; Jia, T. Q.; Sun, Z. R. et al. Hyperfine-induced electron-spin dephasing in negatively charged colloidal quantum dots: A survey of size dependence. J. Phys. Chem. Lett. 2021, 12, 9481–9487.
Hu, R. R.; Yakovlev, D. R.; Liang, P.; Qiang, G.; Chen, C.; Jia, T. Q.; Sun, Z. R.; Bayer, M.; Feng, D. H. Origin of two larmor frequencies in the coherent spin dynamics of colloidal CdSe quantum dots revealed by controlled charging. J. Phys. Chem. Lett. 2019, 10, 3681–3687.
Hu, R. R.; Wu, Z.; Zhang, Y. Y.; Yakovlev, D. R.; Liang, P.; Qiang, G.; Guo, J. X.; Jia, T. Q.; Sun, Z. R.; Bayer, M. et al. Long-lived negative photocharging in colloidal CdSe quantum dots revealed by coherent electron spin precession. J. Phys. Chem. Lett. 2019, 10, 4994–4999.
Crane, M. J.; Jacoby, L. M.; Cohen, T. A.; Huang, Y. P.; Luscombe, C. K.; Gamelin, D. R. Coherent spin precession and lifetime-limited spin dephasing in CsPbBr3 perovskite nanocrystals. Nano Lett. 2020, 20, 8626–8633.
Grigoryev, P. S.; Belykh, V. V.; Yakovlev, D. R.; Lhuillier, E.; Bayer, M. Coherent spin dynamics of electrons and holes in CsPbBr3 colloidal nanocrystals. Nano Lett. 2021, 21, 8481–8487.
Kirstein, E.; Kopteva, N. E.; Yakovlev, D. R.; Zhukov, E. A.; Kolobkova, E. V.; Kuznetsova, M. S.; Belykh, V. V.; Yugova, I. A.; Glazov, M. M.; Bayer, M. et al. Mode locking of hole spin coherences in CsPb(Cl, Br)3 perovskite nanocrystals. Nat. Commun. 2023, 14, 699.
Lin, X. Y.; Han, Y. Y.; Zhu, J. Y.; Wu, K. F. Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots. Nat. Nanotechnol. 2023, 18, 124–130.
Li, Y. L.; Luo, X.; Liu, Y., Lu, X., Wu, K. F. Size- and composition-dependent exciton spin relaxation in lead halide perovskite quantum dots. ACS Energy Lett. 2020, 5, 1701–1708.
Ravi, V. K.; Markad, G. B.; Nag, A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett. 2016, 1, 665–671.
Sarkar, S.; Ravi, V. K.; Banerjee, S.; Yettapu, G. R.; Markad, G. B.; Nag, A.; Mandal, P. Terahertz spectroscopic probe of hot electron and hole transfer from colloidal CsPbBr3 perovskite nanocrystals. Nano Lett. 2017, 17, 5402–5407.
Shang, Q.; Kaledin, A. L.; Li, Q. Y.; Lian, T. Q. Size dependent charge separation and recombination in CsPbI3 perovskite quantum dots. J. Chem. Phys. 2019, 151, 074705.
Feng, D. H.; Shan, L. F.; Jia, T. Q.; Pan, X. Q.; Tong, H. F.; Deng, L.; Sun, Z. R.; Xu, Z. Z. Optical manipulation of electron spin coherence in colloidal CdS quantum dots. Appl. Phys. Lett. 2013, 102, 062408.
Belykh, V. V.; Yakovlev, D. R.; Glazov, M. M.; Grigoryev, P. S.; Hussain, M.; Rautert, J.; Dirin, D. N.; Kovalenko, M. V.; Bayer, M. Coherent spin dynamics of electrons and holes in CsPbBr3 perovskite crystals. Nat. Commun. 2019, 10, 673.
Fu, M.; Tamarat, P.; Huang, H.; Even, J.; Rogach, A. L.; Lounis, B. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 2017, 17, 2895–2901.
Canneson, D.; Shornikova, E. V.; Yakovlev, D. R.; Rogge, T.; Mitioglu, A. A.; Ballottin, M. V.; Christianen, P. C. M.; Lhuillier, E.; Bayer, M.; Biadala, L. Negatively charged and dark excitons in CsPbBr3 perovskite nanocrystals revealed by high magnetic fields. Nano Lett. 2017, 17, 6177–6183.
Meliakov, S. R.; Zhukov, E. A.; Kulebyakina, E. V.; Belykh, V. V.; Yakovlev, D. R. Coherent spin dynamics of electrons in CsPbBr3 perovskite nanocrystals at room temperature. Nanomaterials 2023, 13, 2454.
Dey, A.; Strohmair, S.; He, F.; Akkerman, Q. A.; Feldmann, J. Fast electron and slow hole spin relaxation in CsPbI3 nanocrystals. Appl. Phys. Lett. 2022, 121, 201106.
Mandal, S.; Tkachenko, N. V. Multiphoton excitation of CsPbBr3 perovskite quantum dots (PQDs): How many electrons can one PQD donate to multiple molecular acceptors. J. Phys. Chem. Lett. 2019, 10, 2775–2781.
Wang, J. H.; Ding, T.; Leng, J.; Jin, S. Y.; Wu, K. F. “Intact” carrier doping by pump-pump-probe spectroscopy in combination with interfacial charge transfer: A case study of CsPbBr3 nanocrystals. J. Phys. Chem. Lett. 2018, 9, 3372–3377.
Nakahara, S.; Tahara, H.; Yumoto, G.; Kawawaki, T.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Suppression of trion formation in CsPbBr3 perovskite nanocrystals by postsynthetic surface modification. J. Phys. Chem. C 2018, 122, 22188–22193.