AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Extremely long-lived charge separation and related carrier spin excitation in CsPbBr3 perovskite quantum dots with an electron acceptor benzoquinone

Lin Cheng1Rongrong Hu2Meizhen Jiang1Yumeng Men1Yang Wang1Jinlei Li1Tianqing Jia1Zhenrong Sun1Donghai Feng1,3( )
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Show Author Information

Graphical Abstract

Before laser illumination, the spin signal is weak. After 35 min laser illumination, the spin signal increases significantly due to the accumulation of charge separation which lives over a dozen days.

Abstract

The formation and evolution dynamics of charge separation (CS) in a complex of CsPbBr3 quantum dots (QDs) and 1,4-benzoquinone (BQ) molecules are measured with a high-sensitive pump-orientation-probe technique by which spin signals of the CS state are monitored. An extraordinarily long-lasting CS is observed, with a characteristic time being up to a dozen days under ambient conditions, due to electron transferring from QDs to BQ molecules. Upon the long-lived CS, spin coherences of both electrons and holes are detected at room temperature, with a spin dephasing time of 420 and 26 ps, respectively. The long-lived CS and spin coherence have important implications for applications of perovskite nanomaterials in photocatalysis, photovoltaics, and spintronics.

Electronic Supplementary Material

Download File(s)
6466_ESM.pdf (1.1 MB)

References

[1]

Li, G. R.; Rivarola, F. W. R.; Davis, N. J. L. K.; Bai, S.; Jellicoe, T. C.; de la Peña, F.; Hou, S. C.; Ducati, C.; Gao, F.; Friend, R. H. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 2016, 28, 3528–3534.

[2]

Meyns, M.; Perálvarez, M.; Heuer-Jungemann, A.; Hertog, W.; Ibáñez, M.; Nafria, R.; Genç, A.; Arbiol, J.; Kovalenko, M. V.; Carreras, J. et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl. Mater. Interfaces 2016, 8, 19579–19586.

[3]

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

[4]

Zhang, X. Y.; Lin, H.; Huang, H.; Reckmeier, C.; Zhang, Y.; Choy, W. C. H.; Rogach, A. L. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 2016, 16, 1415–1420.

[5]

Veldhuis, S. A.; Ng, Y. F.; Ahmad, R.; Bruno, A.; Jamaludin, N. F.; Damodaran, B.; Mathews, N.; Mhaisalkar, S. G. Crown ethers enable room-temperature synthesis of CsPbBr3 quantum dots for light-emitting diodes. ACS Energy Lett. 2018, 3, 526–531.

[6]

Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

[7]

Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

[8]

Akkerman, Q. A.; Gandini, M.; Di Stasio, F.; Rastogi, P.; Palazon, F.; Bertoni, G.; Ball, J. M.; Prato, M.; Petrozza, A.; Manna, L. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2017, 2, 16194.

[9]

Zhao, Q.; Hazarika, A.; Chen, X. H.; Harvey, S. P.; Larson, B. W.; Teeter, G. R.; Liu, J.; Song, T.; Xiao, C. X.; Shaw, L. et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 2019, 10, 2842

[10]

Kong, Z. C.; Liao, J. F.; Dong, Y. J.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662.

[11]

Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

[12]

Gao, G.; Xi, Q. Y.; Zhou, H.; Zhao, Y. X.; Wu, C. Q.; Wang, L. D.; Guo, P. R.; Xu, J. W. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032–12038.

[13]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[14]

Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.

[15]

Kang, J.; Wang, L. W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 489–493.

[16]

Dirin, D. N.; Protesescu, L.; Trummer, D.; Kochetygov, I. V.; Yakunin, S.; Krumeich, F.; Stadie, N. P.; Kovalenko, M. V. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 2016, 16, 5866–5874.

[17]

Yettapu, G. R.; Talukdar, D.; Sarkar, S.; Swarnkar, A.; Nag, A.; Ghosh, P.; Mandal, P. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 2016, 16, 4838–4848.

[18]

Yanagi, R.; Zhao, T. S.; Solanki, D.; Pan, Z. H.; Hu, S. Charge separation in photocatalysts: Mechanisms, physical parameters, and design principles. ACS Energy Lett. 2022, 7, 432–452.

[19]

Hutter, E. M.; Sutton, R. J.; Chandrashekar, S.; Abdi-Jalebi, M.; Stranks, S. D.; Snaith, H. J.; Savenije, T. J. Vapour-deposited cesium lead iodide perovskites: Microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett. 2017, 2, 1901–1908.

[20]

Huang, H. W.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B. J.; Steele, J. A. Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Lett. 2020, 5, 1107–1123.

[21]

DuBose, J. T.; Kamat, P. V. Efficacy of perovskite photocatalysis: Challenges to overcome. ACS Energy Lett. 2022, 7, 1994–2011.

[22]
Maity, P.; Naphade, R.; Gutiérrez-Arzaluz, L.; Nematulloev, S.; Thomas, S.; Mir, W. J.; Yorov, K. E.; Alshareef, H. N.; Bakr, O. M.; Mohammed, O. F. Exceeding 100 µs charge carrier separation in perovskite mediated by rhodamine 6G. Adv. Opt. Mater., in press, https://doi.org/10.1002/adom.202300941.
[23]

Wu, K. F.; Liang, G. J.; Shang, Q. Y.; Ren, Y. P.; Kong, D. G.; Lian, T. Q. Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 2015, 137, 12792–12795.

[24]

Kobosko, S. M.; DuBose, J. T.; Kamat, P. V. Perovskite photocatalysis. Methyl viologen induces unusually long-lived charge carrier separation in CsPbBr3 nanocrystals. ACS Energy Lett. 2020, 5, 221–223.

[25]

Luo, X.; Liang, G. J.; Wang, J. H.; Liu, X.; Wu, K. F. Picosecond multi-hole transfer and microsecond charge-separated states at the perovskite nanocrystal/tetracene interface. Chem. Sci. 2019, 10, 2459–2464.

[26]

Wang, K.; Lu, H. P.; Zhu, X. L.; Lin, Y. X.; Beard, M. C.; Yan, Y.; Chen, X. H. Ultrafast reaction mechanisms in perovskite based photocatalytic C–C coupling. ACS Energy Lett. 2020, 5, 566–571.

[27]

Mandal, S.; George, L.; Tkachenko, N. V. Charge transfer dynamics in CsPbBr3 perovskite quantum dots-anthraquinone/fullerene (C60) hybrids. Nanoscale 2019, 11, 862–869.

[28]

DuBose, J. T.; Kamat, P. V. Probing perovskite photocatalysis. Interfacial electron transfer between CsPbBr3 and ferrocene redox couple. J. Phys. Chem. Lett. 2019, 10, 6074–6080.

[29]

Feng, D. H.; Yakovlev, D. R.; Dubertret, B.; Bayer, M. Charge separation dynamics in CdSe/CdS core/shell nanoplatelets addressed by coherent electron spin precession. ACS Nano 2020, 14, 7237–7244.

[30]

Feng, D. H.; Yakovlev, D. R.; Pavlov, V. V.; Rodina, A. V.; Shornikova, E. V.; Mund, J.; Bayer, M. Dynamic evolution from negative to positive photocharging in colloidal CdS quantum dots. Nano Lett. 2017, 17, 2844–2851.

[31]

Li, X.; Feng, D. H.; Tong, H. F.; Jia, T. Q.; Deng, L.; Sun, Z. R.; Xu, Z. Z. Hole surface trapping dynamics directly monitored by electron spin manipulation in CdS nanocrystals. J. Phys. Chem. Lett. 2014, 5, 4310–4316.

[32]

Chen, C.; Liang, P.; Hu, R. R.; Jia, T. Q.; Sun, Z. R.; Feng, D. H. Pump-orientation-probe technique and its applications. Acta Phys. Sin. 2018, 67, 097201.

[33]

Huxter, V. M.; Kovalevskij, V.; Scholes, G. D. Dynamics within the exciton fine structure of colloidal CdSe quantum dots. J. Phys. Chem. B 2005, 109, 20060–20063.

[34]

Wu, Z.; Zhang, Y. Y.; Hu, R. R.; Jiang, M. Z.; Liang, P.; Yang, Q.; Deng, L.; Jia, T. Q.; Sun, Z. R.; Feng, D. H. Hole-acceptor-manipulated electron spin dynamics in CdSe colloidal quantum dots. J. Phys. Chem. Lett. 2021, 12, 2126–2132.

[35]

Zhang, Y. Y.; Jiang, M. Z.; Wu, Z.; Yang, Q.; Men, Y. M.; Cheng, L.; Liang, P.; Hu, R. R.; Jia, T. Q.; Sun, Z. R. et al. Hyperfine-induced electron-spin dephasing in negatively charged colloidal quantum dots: A survey of size dependence. J. Phys. Chem. Lett. 2021, 12, 9481–9487.

[36]

Hu, R. R.; Yakovlev, D. R.; Liang, P.; Qiang, G.; Chen, C.; Jia, T. Q.; Sun, Z. R.; Bayer, M.; Feng, D. H. Origin of two larmor frequencies in the coherent spin dynamics of colloidal CdSe quantum dots revealed by controlled charging. J. Phys. Chem. Lett. 2019, 10, 3681–3687.

[37]

Hu, R. R.; Wu, Z.; Zhang, Y. Y.; Yakovlev, D. R.; Liang, P.; Qiang, G.; Guo, J. X.; Jia, T. Q.; Sun, Z. R.; Bayer, M. et al. Long-lived negative photocharging in colloidal CdSe quantum dots revealed by coherent electron spin precession. J. Phys. Chem. Lett. 2019, 10, 4994–4999.

[38]

Crane, M. J.; Jacoby, L. M.; Cohen, T. A.; Huang, Y. P.; Luscombe, C. K.; Gamelin, D. R. Coherent spin precession and lifetime-limited spin dephasing in CsPbBr3 perovskite nanocrystals. Nano Lett. 2020, 20, 8626–8633.

[39]

Grigoryev, P. S.; Belykh, V. V.; Yakovlev, D. R.; Lhuillier, E.; Bayer, M. Coherent spin dynamics of electrons and holes in CsPbBr3 colloidal nanocrystals. Nano Lett. 2021, 21, 8481–8487.

[40]

Kirstein, E.; Kopteva, N. E.; Yakovlev, D. R.; Zhukov, E. A.; Kolobkova, E. V.; Kuznetsova, M. S.; Belykh, V. V.; Yugova, I. A.; Glazov, M. M.; Bayer, M. et al. Mode locking of hole spin coherences in CsPb(Cl, Br)3 perovskite nanocrystals. Nat. Commun. 2023, 14, 699.

[41]

Lin, X. Y.; Han, Y. Y.; Zhu, J. Y.; Wu, K. F. Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots. Nat. Nanotechnol. 2023, 18, 124–130.

[42]

Li, Y. L.; Luo, X.; Liu, Y., Lu, X., Wu, K. F. Size- and composition-dependent exciton spin relaxation in lead halide perovskite quantum dots. ACS Energy Lett. 2020, 5, 1701–1708.

[43]

Ravi, V. K.; Markad, G. B.; Nag, A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett. 2016, 1, 665–671.

[44]

Sarkar, S.; Ravi, V. K.; Banerjee, S.; Yettapu, G. R.; Markad, G. B.; Nag, A.; Mandal, P. Terahertz spectroscopic probe of hot electron and hole transfer from colloidal CsPbBr3 perovskite nanocrystals. Nano Lett. 2017, 17, 5402–5407.

[45]

Shang, Q.; Kaledin, A. L.; Li, Q. Y.; Lian, T. Q. Size dependent charge separation and recombination in CsPbI3 perovskite quantum dots. J. Chem. Phys. 2019, 151, 074705.

[46]

Feng, D. H.; Shan, L. F.; Jia, T. Q.; Pan, X. Q.; Tong, H. F.; Deng, L.; Sun, Z. R.; Xu, Z. Z. Optical manipulation of electron spin coherence in colloidal CdS quantum dots. Appl. Phys. Lett. 2013, 102, 062408.

[47]

Belykh, V. V.; Yakovlev, D. R.; Glazov, M. M.; Grigoryev, P. S.; Hussain, M.; Rautert, J.; Dirin, D. N.; Kovalenko, M. V.; Bayer, M. Coherent spin dynamics of electrons and holes in CsPbBr3 perovskite crystals. Nat. Commun. 2019, 10, 673.

[48]

Fu, M.; Tamarat, P.; Huang, H.; Even, J.; Rogach, A. L.; Lounis, B. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 2017, 17, 2895–2901.

[49]

Canneson, D.; Shornikova, E. V.; Yakovlev, D. R.; Rogge, T.; Mitioglu, A. A.; Ballottin, M. V.; Christianen, P. C. M.; Lhuillier, E.; Bayer, M.; Biadala, L. Negatively charged and dark excitons in CsPbBr3 perovskite nanocrystals revealed by high magnetic fields. Nano Lett. 2017, 17, 6177–6183.

[50]

Meliakov, S. R.; Zhukov, E. A.; Kulebyakina, E. V.; Belykh, V. V.; Yakovlev, D. R. Coherent spin dynamics of electrons in CsPbBr3 perovskite nanocrystals at room temperature. Nanomaterials 2023, 13, 2454.

[51]

Dey, A.; Strohmair, S.; He, F.; Akkerman, Q. A.; Feldmann, J. Fast electron and slow hole spin relaxation in CsPbI3 nanocrystals. Appl. Phys. Lett. 2022, 121, 201106.

[52]

Mandal, S.; Tkachenko, N. V. Multiphoton excitation of CsPbBr3 perovskite quantum dots (PQDs): How many electrons can one PQD donate to multiple molecular acceptors. J. Phys. Chem. Lett. 2019, 10, 2775–2781.

[53]

Wang, J. H.; Ding, T.; Leng, J.; Jin, S. Y.; Wu, K. F. “Intact” carrier doping by pump-pump-probe spectroscopy in combination with interfacial charge transfer: A case study of CsPbBr3 nanocrystals. J. Phys. Chem. Lett. 2018, 9, 3372–3377.

[54]

Nakahara, S.; Tahara, H.; Yumoto, G.; Kawawaki, T.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Suppression of trion formation in CsPbBr3 perovskite nanocrystals by postsynthetic surface modification. J. Phys. Chem. C 2018, 122, 22188–22193.

Nano Research
Pages 10649-10654
Cite this article:
Cheng L, Hu R, Jiang M, et al. Extremely long-lived charge separation and related carrier spin excitation in CsPbBr3 perovskite quantum dots with an electron acceptor benzoquinone. Nano Research, 2024, 17(12): 10649-10654. https://doi.org/10.1007/s12274-024-6466-z
Topics:

809

Views

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 22 November 2023
Revised: 31 December 2023
Accepted: 01 January 2024
Published: 24 January 2024
© Tsinghua University Press 2024
Return