AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance wood-based thermoelectric sponges for thermal energy harvesting and smart buildings

Ding Zhang,§Qi Li,§Yanjie FangPeijia BaiLili LiuJiaqi GuoGuangfa WangYuetong ZhouRujun Ma( )
School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China

§ Ding Zhang and Qi Li contributed equally to this work.

Show Author Information

Graphical Abstract

Through simple chemical treatment and in-situ growth of thermoelectric materials, high-performance wood-based thermoelectric sponges were designed with excellent thermoelectric properties. The fabricated thermoelectric array device exhibits great application prospects in smart buildings and energy supply, especially in relatively hot and cold regions.

Abstract

The development of renewable woods for power generation can help improve the energy efficiency of buildings, and promote the concept design and implementation of “smart buildings”. Here, with specific chemical treatment and hydrothermal synthesis, we demonstrated the practical value of natural wood for thermoelectric power generation in smart buildings. The prepared wood-based thermoelectric sponges show high Seebeck coefficients of 320.5 and 436.6 μV/K in the vertical and parallel directions of the longitudinal channel of wood. After 500 cycles of the compressive strain at 20%, the corresponding Seebeck coefficients increase up to 413.4 and 502.1 μV/K, respectively, which is attributed to the improved contact and connection between tellurium thermoelectric nanowires. The Seebeck coefficients are much larger than those of most reported inorganic thermoelectric materials. Meanwhile, the thermoelectric sponges maintain excellent thermoelectric and mechanical stability. We further modeled the application value of wood-based thermoelectric sponges in smart buildings for power generation. Relatively high thermoelectric electricity can be obtained, such as in Beijing with over 1.5 million kWh every year, demonstrating the great potential in thermal energy harvest and energy supply.

Electronic Supplementary Material

Download File(s)
12274_2024_6467_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Svetozarevic, B.; Begle, M.; Jayathissa, P.; Caranovic, S.; Shepherd, R. F.; Nagy, Z.; Hischier, I.; Hofer, J.; Schlueter, A. Dynamic photovoltaic building envelopes for adaptive energy and comfort management. Nat. Energy 2019, 4, 671–682.

[2]

Sun, J. G.; Guo, H. Z.; Schädli, G. N.; Tu, K. K.; Schär, S.; Schwarze, F. W. M. R.; Panzarasa, G.; Ribera, J.; Burgert, I. Enhanced mechanical energy conversion with selectively decayed wood. Sci. Adv. 2021, 7, eabd9138.

[3]

Ballif, C.; Perret-Aebi, L. E.; Lufkin, S.; Rey, E. Integrated thinking for photovoltaics in buildings. Nat. Energy 2018, 3, 438–442.

[4]

Sun, J. G.; Tu, K. K.; Büchele, S.; Koch, S. M.; Ding, Y.; Ramakrishna, S. N.; Stucki, S.; Guo, H. Y.; Wu, C. S.; Keplinger, T. et al. Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators. Matter 2021, 4, 3049–3066.

[5]

Sun, J. G.; Schütz, U.; Tu, K. K.; Koch, S. M.; Roman, G.; Stucki, S.; Chen, F.; Ding, Y.; Yan, W. Q.; Wu, C. S. et al. Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects. Nano Energy 2022, 102, 107670.

[6]

Liu, Y.; Yu, N. P.; Wang, W.; Guan, X. H.; Xu, Z. B.; Dong, B.; Liu, T. Coordinating the operations of smart buildings in smart grids. Appl. Energy 2018, 228, 2510–2525.

[7]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[8]

Zhang, D.; Mao, Y.; Bai, P. J.; Li, Q.; He, W.; Cui, H.; Ye, F.; Li, C. X.; Ma, R. J.; Chen, Y. S. Multifunctional superelastic graphene-based thermoelectric sponges for wearable and thermal management devices. Nano Lett. 2022, 22, 3417–3424.

[9]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[10]

Zhao, X.; Zhang, D.; Xu, S. W.; Qian, W. Q.; Han, W.; Wang, Z. L.; Yang, Y. Stretching-enhanced triboelectric nanogenerator for efficient wind energy scavenging and ultrasensitive strain sensing. Nano Energy 2020, 75, 104920.

[11]

He, W.; Fu, X.; Bai, P. J.; Zhang, D.; Cui, H.; Ma, R. J. High-performance coaxial asymmetry fibrous supercapacitors with a poly (vinyl alcohol)-montmorillonite separator. Nano Lett. 2021, 21, 9164–9171.

[12]

Zhang, D.; Wu, H. T.; Bowen, C. R.; Yang, Y. Recent advances in pyroelectric materials and applications. Small 2021, 17, 2103960.

[13]

He, X. Y.; Gu, J. T.; Hao, Y. N.; Zheng, M. R.; Wang, L. M.; Yu, J. Y.; Qin, X. H. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 2022, 450, 137937.

[14]

Yang, H.; Khan, S. A.; Li, N.; Fang, R.; Huang, Z. Q.; Zhang, H. L. Thermogalvanic gel patch for self-powered human motion recognition enabled by photo-thermal-electric conversion. Chem. Eng. J. 2023, 473, 145247.

[15]

Zhang, D.; Zhou, Y. T.; Mao, Y.; Li, Q.; Liu, L. L.; Bai, P. J.; Ma, R. J. Highly antifreezing thermogalvanic hydrogels for human heat harvesting in ultralow temperature environments. Nano Lett. 2023, 23, 11272–11279.

[16]

He, X. Y.; Shi, J.; Hao, Y. N.; He, M. T.; Cai, J. X.; Qin, X. H.; Wang, L. M.; Yu, J. Y. Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing. Carbon Energy 2022, 4, 621–632.

[17]

Liu, L. L.; Zhang, D.; Bai, P. J.; Mao, Y.; Li, Q.; Guo, J. Q.; Fang, Y. J.; Ma, R. J. Strong tough thermogalvanic hydrogel thermocell with extraordinarily high thermoelectric performance. Adv. Mater. 2023, 35, 2300696.

[18]

Bai, C. H.; Li, X. B.; Cui, X. J.; Yang, X. R.; Zhang, X. R.; Yang, K.; Wang, T.; Zhang, H. L. Transparent stretchable thermogalvanic PVA/gelation hydrogel electrolyte for harnessing solar energy enabled by a binary solvent strategy. Nano Energy 2022, 100, 107449.

[19]
Li, H. X.; Zhang, D.; Wang, C.; Hao, Y. L.; Zhang, Y.; Li, Y.; Bao, P. P.; Wu, H. T. 3D extruded graphene thermoelectric threads for self-powered oral health monitoring. Small 2023 , 19, 2300908.
[20]

He, X. Y.; Li, B. Y.; Cai, J. X.; Zhang, H. H.; Li, C. Z.; Li, X. X.; Yu, J. Y.; Wang, L. M.; Qin, X. H. A waterproof, environment-friendly, multifunctional, and stretchable thermoelectric fabric for continuous self-powered personal health signal collection at high humidity. SusMat 2023, 3, 709–720.

[21]

An, L. L.; Yang, Z. H.; Zeng, X. L.; Hu, W. B.; Yu, Y. L.; Zhang, J. Y.; Wang, Q. H. Flexible and quasi-isotropically thermoconductive polyimide films by guided assembly of boron nitride nanoplate/boron nitride flakes for microelectronic application. Chem. Eng. J. 2022, 431, 133740.

[22]

Zhang, D.; Mao, Y.; Ye, F.; Li, Q.; Bai, P. J.; He, W.; Ma, R. J. Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization. Energy Environ. Sci. 2022, 15, 2974–2982.

[23]

Zhang, D.; Zhang, K. W.; Wang, Y. M.; Wang, Y. H.; Yang, Y. Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system. Nano Energy 2019, 56, 25–32.

[24]

Zhang, D.; Song, Y. D.; Ping, L.; Xu, S. W.; Yang, D.; Wang, Y. H.; Yang, Y. Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Res. 2019, 12, 2982–2987.

[25]

Zhang, D.; Wang, Y. H.; Yang, Y. Design, performance, and application of thermoelectric nanogenerators. Small 2019, 15, 1805241.

[26]

He, X. Y.; Hao, Y. N.; He, M. T.; Qin, X. H.; Wang, L. M.; Yu, J. Y. Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Appl. Mater. Interfaces 2021, 13, 60498–60507.

[27]

Li, J. N.; Wang, Z. S.; Khan, S. A.; Li, N.; Huang, Z. Q.; Zhang, H. L. Self-powered information conversion based on thermogalvanic hydrogel with interpenetrating networks for nursing aphasic patients. Nano Energy 2023, 113, 108612.

[28]

Tian, C. H.; Bai, C. H.; Wang, T.; Yan, Z. F.; Zhang, Z. Y.; Zhuo, K.; Zhang, H. L. Thermogalvanic hydrogel electrolyte for harvesting biothermal energy enabled by a novel redox couple of SO4/32− ions. Nano Energy 2023, 106, 108077.

[29]

Liu, Z. J.; Tian, B.; Jiang, Z. D.; Li, S. M.; Lei, J. M.; Zhang, Z. K.; Liu, J. J.; Shi, P.; Lin, Q. J. Flexible temperature sensor with high sensitivity ranging from liquid nitrogen temperature to 1200 °C. Int. J. Extrem. Manuf. 2023, 5, 015601.

[30]

Liu, Z. J.; Tian, B.; Li, Y.; Guo, Z. J.; Zhang, Z. K.; Luo, Z. F.; Zhao, L. B.; Lin, Q. J.; Lee, C.; Jiang, Z. D. Evolution of thermoelectric generators: From application to hybridization. Small 2023, 19, 2304599.

[31]

Liu, Z. J.; Tian, B.; Li, Y.; Lei, J. M.; Zhang, Z. K.; Liu, J. J.; Lin, Q. J.; Lee, C.; Jiang, Z. D. A large-area bionic skin for high-temperature energy harvesting applications. Nano Res. 2023, 16, 10245–10255.

[32]

Hao, S. F.; Jiao, J. Y.; Chen, Y. D.; Wang, Z. L.; Cao, X. Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors. Nano Energy 2020, 75, 104957.

[33]

Li, Y.; Cui, J. D.; Shen, H. Y.; Liu, C. C.; Wu, P. L.; Qian, Z. Y.; Duan, Y. L.; Liu, D. T. Useful spontaneous hygroelectricity from ambient air by ionic wood. Nano Energy 2022, 96, 107065.

[34]

Zhao, X.; Chen, Z. H.; Zhuo, H.; Hu, Y. J.; Shi, G.; Wang, B.; Lai, H. H.; Araby, S.; Han, W. J.; Peng, X. W. et al. Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting. J. Mater. Sci. Technol. 2022, 120, 150–158.

[35]

Sun, J. G.; Guo, H. Y.; Ribera, J.; Wu, C. S.; Tu, K. K.; Binelli, M.; Panzarasa, G.; Schwarze, F. W. M. R.; Wang, Z. L.; Burgert, I. Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano 2020, 14, 14665–14674.

[36]

Zhu, H. L.; Luo, W.; Ciesielski, P. N.; Fang, Z. Q.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. B. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 2016, 116, 9305–9374.

[37]

Zhang, Q.; Li, L.; Jiang, B.; Zhang, H. T.; He, N.; Yang, S.; Tang, D. W.; Song, Y. C. Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfaces 2020, 12, 28179–28187.

[38]

Chen, H. J.; Zou, Y. H.; Li, J.; Zhang, K. W.; Xia, Y. Z.; Hui, B.; Yang, D. J. Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Appl. Catal. B: Environ. 2021, 293, 120215.

[39]

Song, H. Y.; Xu, S. M.; Li, Y. J.; Dai, J. Q.; Gong, A.; Zhu, M. W.; Zhu, C. L.; Chen, C. J.; Chen, Y. N.; Yao, Y. G. et al. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 2018, 8, 1701203.

[40]

Lu, L. L.; Lu, Y. Y.; Xiao, Z. J.; Zhang, T. W.; Zhou, F.; Ma, T.; Ni, Y.; Yao, H. B.; Yu, S. H.; Cui, Y. Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 2018, 30, 1706745.

[41]

Guan, H.; Cheng, Z. Y.; Wang, X. Q. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 2018, 12, 10365–10373.

[42]

Song, J. W.; Chen, C. J.; Zhu, S. Z.; Zhu, M. W.; Dai, J. Q.; Ray, U.; Li, Y. J.; Kuang, Y. D.; Li, Y. F.; Quispe, N. et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228.

[43]

Chen, B.; Leiste, U. H.; Fourney, W. L.; Liu, Y.; Chen, Q. Y.; Li, T. Hardened wood as a renewable alternative to steel and plastic. Matter 2021, 4, 3941–3952.

[44]

Xiao, S. L.; Chen, C. J.; Xia, Q. Q.; Liu, Y.; Yao, Y.; Chen, Q. Y.; Hartsfield, M.; Brozena, A.; Tu, K. K.; Eichhorn, S. J. et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 2021, 374, 465–471.

[45]

Chen, C. J.; Song, J. W.; Zhu, S. Z.; Li, Y. J.; Kuang, Y. D.; Wan, J. Y.; Kirsch, D.; Xu, L. S.; Wang, Y. B.; Gao, T. T. et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem 2018, 4, 544–554.

[46]

Chen, C. J.; Song, J. W.; Cheng, J.; Pang, Z. Q.; Gan, W. T.; Chen, G. G.; Kuang, Y. D.; Huang, H.; Ray, U.; Li, T. et al. Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS Nano 2020, 14, 16723–16734.

[47]

Cheng, H.; Du, Y. R.; Wang, B. J.; Mao, Z. P.; Xu, H.; Zhang, L. P.; Zhong, Y.; Jiang, W.; Wang, L. J.; Sui, X. Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chem. Eng. J. 2018, 338, 1–7.

[48]

He, M. H.; Lin, Y. J.; Chiu, C. M.; Yang, W. F.; Zhang, B. B.; Yun, D. Q.; Xie, Y. N.; Lin, Z. H. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy 2018, 49, 588–595.

[49]

Li, F. C.; Liu, Y.; Shi, X. L.; Li, H. P.; Wang, C. H.; Zhang, Q.; Ma, R. J.; Liang, J. J. Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect stimulus discriminability. Nano Lett. 2020, 20, 6176–6184.

[50]

Kim, J.; Bae, E. J.; Kang, Y. H.; Lee, C.; Cho, S. Y. Elastic thermoelectric sponge for pressure-induced enhancement of power generation. Nano Energy 2020, 74, 104824.

[51]

Kang, Y. H.; Bae, E. J.; Lee, M. H.; Han, M.; Kim, B. J.; Cho, S. Y. Highly flexible and durable thermoelectric power generator using CNT/PDMS foam by rapid solvent evaporation. Small 2022, 18, 2106108.

[52]

Wang, X. D.; Liang, L. R.; Lv, H. C.; Zhang, Y. C.; Chen, G. M. Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 2021, 90, 106577.

[53]

Lv, H. C.; Liang, L. R.; Zhang, Y. C.; Deng, L.; Chen, Z. J.; Liu, Z. X.; Wang, H. F.; Chen, G. M. A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 2021, 88, 106260.

[54]

Yin, Y. M.; Wang, Y. L.; Li, H. Y.; Xu, J.; Zhang, C.; Li, X.; Cao, J. W.; Feng, H. F.; Zhu, G. A flexible dual parameter sensor with hierarchical porous structure for fully decoupled pressure-temperature sensing. Chem. Eng. J. 2022, 430, 133158.

[55]

Shi, T. F.; Chen, M. R.; Liu, Z. G.; Song, Q. F.; Ou, Y. X.; Wang, H. Q.; Liang, J.; Zhang, Q. H.; Mao, Z. D.; Wang, Z. W. et al. A Bi2Te3-filled nickel foam film with exceptional flexibility and thermoelectric performance. Nanomaterials 2022, 12, 1693.

[56]

Kim, F.; Yang, S. E.; Ju, H.; Choo, S.; Lee, J.; Kim, G.; Jung, S. H.; Kim, S.; Cha, C.; Kim, K. T. et al. Direct ink writing of three-dimensional thermoelectric microarchitectures. Nat. Electron. 2021, 4, 579–587.

[57]

Liu, Y. J.; Wang, X. D.; Hou, S. H.; Wu, Z. X.; Wang, J.; Mao, J.; Zhang, Q.; Liu, Z. G.; Cao, F. Scalable-produced 3D elastic thermoelectric network for body heat harvesting. Nat. Commun. 2023, 14, 3058.

[58]

Li, T.; Zhai, Y.; He, S. M.; Gan, W. T.; Wei, Z. Y.; Heidarinejad, M.; Dalgo, D.; Mi, R. Y.; Zhao, X. P.; Song, J. W. et al. A radiative cooling structural material. Science 2019, 364, 760–763.

Nano Research
Pages 5349-5357
Cite this article:
Zhang D, Li Q, Fang Y, et al. High-performance wood-based thermoelectric sponges for thermal energy harvesting and smart buildings. Nano Research, 2024, 17(6): 5349-5357. https://doi.org/10.1007/s12274-024-6467-y
Topics:

1219

Views

0

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 06 December 2023
Revised: 29 December 2023
Accepted: 02 January 2024
Published: 08 February 2024
© Tsinghua University Press 2024
Return