AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hollow FeCoNiAl microspheres with stabilized magnetic properties for microwave absorption

Linhe Yu1Gangjie Lian2,3Guozhen Zhu1( )Sue Ren4Yanfang Du5Xuhui Xiong2Rui Chen6Jincang Zhang3Wenbin You2( )Renchao Che2,3( )
Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
Zhejiang Laboratory, Hangzhou 311100, China
Capital Aerospace Machinery Corporation Limited, Beijing 100000, China
AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
International Center for Quantum and Molecular Structures, Materials Genome Institute, Physics Department, Shanghai University, Shanghai 200444, China
Show Author Information

Graphical Abstract

Hollow FeCoNiAl with reinforced magnetic stabilization is synthesized via a simple spray-drying and following annealing. Multiple microwave absorption mechanisms enhanced its microwave absorption ability.

Abstract

Development of high-performance microwave absorption materials (MAM) with stabilized magnetic properties at high temperatures is specifically essential but remains challenging. Moreover, the Snoke's limitation restrains the microwave absorption (MA) property of magnetic materials. Modulating alloy components is considered an effective way to solve the aforementioned problems. Herein, a hollow medium-entropy FeCoNiAl alloy with a stable magnetic property is prepared via simple spray-drying and two-step annealing for efficient MA. FeCoNiAl exhibited an ultrabroad effective absorption band (EAB) of 5.84 GHz (12.16–18 GHz) at a thickness of just 1.6 mm, revealing an excellent absorption capability. Furthermore, the MA mechanism of FeCoNiAl is comprehensively investigated via off-axis holography. Finally, the electromagnetic properties, antioxidant properties, and residual magnetism at high temperatures of FeCoNiAl alloys are summarized in detail, providing new insights into the preparation of MAM operating at elevated temperatures.

Electronic Supplementary Material

Download File(s)
12274_2024_6468_MOESM1_ESM.pdf (571.1 KB)

References

[1]

Liu, W.; Shao, Q. W.; Ji, G. B.; Liang, X. H.; Cheng, Y.; Quan, B.; Du, Y. W. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 2017, 313, 734–744.

[2]

Deng, J. S.; Li, S. M.; Zhou, Y. Y.; Liang, L. Y.; Zhao, B.; Zhang, X.; Zhang, R. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J. Colloid Interface Sci. 2018, 509, 406–413.

[3]

Kim, S. H.; Lee, S. Y.; Zhang, Y. L.; Park, S. J.; Gu, J. W. Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 2023, 10, 2303104.

[4]

Zhang, Q. C.; Du, Z. J.; Ding, Z. Z.; Liu, Y.; Yue, J. L.; Huang, X. Z.; Chen, A. L. Clathrate-like porous graphene/TiO2 composite with strong dielectric polarization for electromagnetic microwave absorption. Appl. Phys. Lett. 2023, 122, 031901.

[5]
Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, DOI: 10.1007/s12274-023-6090-3.
[6]

Li, D.; Liao, H. Y.; Kikuchi, H.; Liu, T. Microporous Co@C nanoparticles prepared by dealloying CoAl@C precursors: Achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces 2017, 9, 44704–44714.

[7]

Jiang, Z. Y.; Gao, Y. J.; Pan, Z. H.; Zhang, M. M.; Guo, J. H.; Zhang, J. W.; Gong, C. H. Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2024, 174, 195–203.

[8]

Chen, L.; Li, Y. B.; Zhao, B.; Liu, S. S.; Zhang, H. B.; Chen, K.; Li, M.; Du, S. Y.; Xiu, F. X.; Che, R. C. et al. Multiprincipal element M2FeC (M = Ti, V, Nb, Ta, Zr) MAX phases with synergistic effect of dielectric and magnetic loss. Adv. Sci. 2023, 10, 2206877.

[9]

Shu, J. C.; Yang, X. Y.; Zhang, X. R.; Huang, X. Y.; Cao, M. S.; Li, L.; Yang, H. J.; Cao, W. Q. Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 2020, 162, 157–171.

[10]

Ding, D.; Wang, Y.; Li, X. D.; Qiang, R.; Xu, P.; Chu, W. L.; Han, X. J.; Du, Y. C. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 2017, 111, 722–732.

[11]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[12]

Liang, Q. Q.; Wang, L.; Qi, X. S.; Peng, Q.; Gong, X.; Chen, Y. L.; Xie, R.; Zhong, W. Hierarchical engineering of CoNi@Air@C/SiO2@polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy. J. Mater. Sci. Technol. 2023, 147, 37–46.

[13]

Ren, Y. J.; Wang, X.; Ma, J. X.; Zheng, Q.; Wang, L. J.; Jiang, W. Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: Dimension design and morphology regulation. J. Mater. Sci. Technol. 2023, 132, 223–251.

[14]

Liu, Z. Y.; Tian, H. L.; Xu, R. X.; Men, W. W.; Su, T.; Qu, Y. G.; Zhao, W.; Liu, D. Magnetic crystallite-decorated hollow multi-cavity carbon nanosheet spheres for superior electromagnetic absorption. Carbon 2023, 205, 138–150.

[15]

Huang, W. H.; Wang, S.; Yang, X. F.; Zhang, X. X.; Zhang, Y. N.; Pei, K.; Che, R. C. Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core-shell nanofiber network for enhanced electromagnetic wave adsorption. Carbon 2022, 195, 44–56.

[16]

Jin, L.; Wang, J. Q.; Wu, F.; Yin, Y. N.; Zhang, B. L. MXene@Fe3O4 microspheres/fibers composite microwave absorbing materials: Optimum composition and performance evaluation. Carbon 2021, 182, 770–780.

[17]
Zhan, B. B.; Hao, Y. L.; Qi, X. S.; Qu, Y. P.; Ding, J. F.; Yang, J. L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties. Nano Res., in press, DOI: 10.1007/s12274-023-6236-7.
[18]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni and Zn) nanocomposites by defect and interface engineering. J. Mater. Sci. Technol. 2023, 139, 137–146.

[19]

Deng, J. S.; Zhang, X.; Zhao, B.; Bai, Z. Y.; Wen, S. M.; Li, S. M.; Li, S. Y.; Yang, J.; Zhang, R. Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 2018, 6, 7128–7140.

[20]

Ouyang, J.; He, Z. L.; Zhang, Y.; Yang, H. M.; Zhao, Q. H. Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces 2019, 11, 39304–39314.

[21]

Rao, L. J.; Wang, L.; Yang, C. D.; Zhang, R. X.; Zhang, J. C.; Liang, C. Y.; Che, R. C. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2213258.

[22]

Huang, M. Q.; Yu, X. F.; Wang, L.; Liu, J. W.; You, W. B.; Wang, M.; Che, R. C. Enhanced magnetic microwave absorption at low-frequency band by ferrite assembled microspheres with controlled components and morphologies. Small Struct. 2021, 2, 2100033.

[23]

Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

[24]

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

[25]

Yuan, M. Y.; Zhao, B.; Yang, C. D.; Pei, K.; Wang, L. Y.; Zhang, R. X.; You, W. B.; Liu, X. H.; Zhang, X. F.; Che, R. C. Remarkable magnetic exchange coupling via constructing bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 2022, 32, 2203161.

[26]

Huang, L. X.; Duan, Y. P.; Shi, Y. P.; Pang, H. F.; Zeng, Q. W.; Che, R. C. Novel broadband electromagnetic-wave absorption metasurfaces composed of C-doped FeCoNiSiAl high-entropy-alloy ribbons with hierarchical nanostructures. Compos. Part B: Eng. 2022, 244, 110182.

[27]

Li, X.; Wu, Z. C.; You, W. B.; Yang, L. T.; Che, R. C. Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 2022, 14, 73.

[28]

Yang, B. T.; Fang, J. F.; Xu, C. Y.; Cao, H.; Zhang, R. X.; Zhao, B.; Huang, M. Q.; Wang, X. Y.; Lv, H. L.; Che, R. C. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 170.

[29]

Zhang, C.; Yuan, J. H.; Wang, X.; Zheng, G. Z. Crystal structure, curie temperature, and electromagnetic absorption properties in Fe x Co30Ni60− x Si5Al5 ( x = 30, 35, 40, 45) high entropy alloys. Mater. Res. Express 2021, 8, 106104.

[30]

Zhou, H. R.; Jiang, L. W.; Zhu, S. Q.; Wang, L. L.; Hu, Y. F.; Zhang, X. F.; Wu, A. H. Excellent electromagnetic-wave absorbing performances and great harsh-environment resistance of FeCoNiCr x Mn high entropy alloys. J. Alloys Compd. 2023, 936, 168282.

[31]

Liu, X. J.; Duan, Y. P.; Guo, Y.; Pang, H. F.; Li, Z. R.; Sun, X. Y.; Wang, T. M. Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 2022, 14, 142.

[32]

Yang, P. P.; Liu, Y.; Zhao, X. C.; Cheng, J. W.; Li, H. Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling. J. Mater. Res. 2016, 31, 2398–2406.

[33]

Zhang, L. M.; Jia, J.; Liang, H. S.; Chen, G. Facile synthesis of adjustable high-entropy alloy/polypyrrole electromagnetic wave absorber. J. Mater. Sci. Mater. Electron. 2021, 32, 26074–26085.

[34]

Dai, G. H.; Deng, R. X.; Zhang, T.; Yu, Y.; Song, L. X. Quantitative evaluation of loss capability for in situ conductive phase enhanced microwave absorption of high-entropy transition metal oxides. Adv. Funct. Mater. 2022, 32, 2205325.

[35]

Zhao, B.; Yan, Z. K.; Du, Y. Q.; Rao, L. J.; Chen, G. Y.; Wu, Y. Y.; Yang, L. T.; Zhang, J. C.; Wu, L. M.; Zhang, D. W. et al. High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 2023, 35, 2210243.

[36]

Qin, L.; Liu, S.; Yang, J. F.; He, M.; Yu, J. Carbon nanotube modified hierarchical NiCo/porous nanocomposites with enhanced electromagnetic wave absorption. J. Alloys Compd. 2023, 966, 171599.

[37]

Zhang, C.; Luo, K. C.; Liu, J. W.; Zhang, H. B.; Xu, C. Y.; Zhang, R. X.; Cheng, Y. F.; Zhang, J. C.; Wu, L. M.; Che, R. C. Realizing optimized interfacial polarization and impedance matching with CNT-confined Co nanoparticles in hollow carbon microspheres for enhanced microwave absorption. J. Mater. Sci. Technol. 2024, 175, 1–9.

[38]

Rajeevan, V.; Joseyphus, R. J. Structural and magnetic properties of Ni substituted FeCo alloy obtained through polyol process. J. Magn. Magn. Mater. 2022, 563, 170016.

[39]

Jia, T. M.; Qi, X. S.; Wang, L.; Yang, J. L.; Gong, X.; Chen, Y. L.; Qu, Y. P.; Peng, Q.; Zhong, W. Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption. Carbon 2023, 206, 364–374.

[40]
Peng, G. Y.; Zhou, J. T.; Tao, J. Q.; Wang, W. Z.; Liu, J.; Yao, J. R.; Liu, Y. J.; Yao, Z. J. Magnetic nanoparticle-modified hollow double-shell SiC@C@FeCo with excellent electromagnetic wave absorption. Nano Res., in press, DOI: 10.1007/s12274-023-6084-1.
[41]
Huang, M. Q.; Wang, L.; Pei, K.; Li, B. X.; You, W. B.; Yang, L. T.; Zhou, G.; Zhang, J. C.; Liang, C. Y.; Che, R. C. Heterogeneous interface engineering of bi-metal MOFs-derived ZnFe2O4-ZnO-Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202308898.
[42]

Xiang, L. L.; Darboe, A. K.; Luo, Z. H.; Qi, X. S.; Shao, J. J.; Ye, X. J.; Liu, C. S.; Sun, K.; Qu, Y. P.; Xu, J. et al. Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: A combined composition modulation and interface engineering strategy for microwave absorption. Adv. Compos. Hybrid Mater. 2023, 6, 215.

[43]

Xu, C. Y.; Wang, L.; Li, X.; Qian, X.; Wu, Z. C.; You, W. B.; Pei, K.; Qin, G.; Zeng, Q. W.; Yang, Z. Q. et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nanomicro Lett 2021, 13, 47.

[44]

Lan, D.; Wang, Y.; Wang, Y. Y.; Zhu, X. F.; Li, H. F.; Guo, X. M.; Ren, J. N.; Guo, Z. H.; Wu, G. L. Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 2023, 651, 494–503.

[45]

Chen, N.; Pan, X. F.; Guan, Z. J.; Zhang, Y. J.; Wang, K. J.; Jiang, J. T. Flower-like hierarchical Fe3O4-based heterostructured microspheres enabling superior electromagnetic wave absorption. Appl. Surf. Sci. 2024, 642, 158633.

[46]

Xu, H. X.; He, Z. Z.; Li, Y. R.; Wang, Y. R.; Zhang, Z. W.; Dai, X. Q.; Xiong, Z. M.; Geng, W. C.; Liu, P. B. Porous magnetic carbon spheres with adjustable magnetic-composition and synergistic effect for lightweight microwave absorption. Carbon 2023, 213, 118290.

[47]
He, Z. Z.; Xu, H. X.; Shi, L. Z.; Ren, X. R.; Kong, J.; Liu, P. B. Hierarchical Co2P/CoS2@C@MoS2 composites with hollow cavity and multiple phases toward wideband electromagnetic wave absorption. Small, in press, DOI: 10.1002/smll.202306253.
[48]

Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

Nano Research
Pages 2079-2087
Cite this article:
Yu L, Lian G, Zhu G, et al. Hollow FeCoNiAl microspheres with stabilized magnetic properties for microwave absorption. Nano Research, 2024, 17(3): 2079-2087. https://doi.org/10.1007/s12274-024-6468-x
Topics:
Part of a topical collection:

863

Views

8

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 15 December 2023
Revised: 30 December 2023
Accepted: 02 January 2024
Published: 26 January 2024
© Tsinghua University Press 2024
Return