AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Quantitative assessment of the breast cancer marker HER2 using a gold nanoparticle-based lateral flow immunoassay

Liya YeXinxin XuAihua QuLiqiang LiuChuanlai XuHua Kuang( )
International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Show Author Information

Graphical Abstract

Monoclonal antibodies against the extracellular domain of human epidermal growth factor receptor 2 (HER2) were developed, and a rapid and accurate lateral flow immunoassay was established for use in community medical institutions.

Abstract

Human epidermal growth factor receptor 2 (HER2) is an important biomarker for detection and treatment of breast cancer. In this study, we developed monoclonal antibodies against the extracellular domain (ECD) of HER2 and established a rapid and accurate lateral flow immunoassay (LFIA) for use in community medical institutions. The gene sequence of human HER2-ECD was obtained from the National Center for Biotechnology Information (NCBI) to construct the expression plasmid. HER2-ECD protein expressed in HEK293F cells was used to immunize BALB/c mice. The monoclonal antibodies were produced in mouse ascites and isolated by hybridoma cell screening. Antibodies were analyzed for purity by SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel-electrophoresis) and affinity was assessed by enzyme-linked immunosorbent assay (ELISA) while subtypes were detected using the commercial kits. The HER2-ECD test strip was prepared based on the sandwich method and evaluated using a portable detection instrument. The affinity of the paired antibodies, 4D8 and 8D9, both reached 1 × 108 L/mol. Both antibodies specifically recognized the HER2-ECD protein in serum. The limit of detection (LOD) of the gold nanoparticle (AuNP)-based LFIA was 1.7 ng/mL with a detection range of 1.7–400 ng/mL, and the performance of the HER2-ECD strip correlated well with that of a Siemens chemiluminescent immunoassay (CLIA) kit. In conclusion, the paired antibodies were successfully prepared with high affinity and specificity. The AuNP-based LFIA of HER2-ECD provides a fast and accurate method to detect the concentration of HER2-ECD in serum samples for clinical use in community medical institutions, and could contribute to determining the progress of the disease or the effectiveness of treatment.

Electronic Supplementary Material

Download File(s)
12274_2024_6471_MOESM1_ESM.pdf (284.4 KB)

References

[1]

Wieduwilt, M. J.; Moasser, M. M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell. Mol. Life Sci. 2008, 65, 1566–1584.

[2]

Yarden, Y.; Sliwkowski, M. X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell. Biol. 2001, 2, 127–137.

[3]

Slamon, D. J.; Clark, G. M.; Wong, S. G.; Levin, W. J.; Ullrich, A.; McGuire, W. L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/ neu oncogene. Science 1987, 235, 177–182.

[4]

Akiyama, T.; Sudo, C.; Ogawara, H.; Toyoshima, K.; Yamamoto, T. The product of the human c- erbB-2 gene: A 185-kilodalton glycoprotein with tyrosine kinase activity. Science 1986, 232, 1644–1646.

[5]

Rubin, I.; Yarden, Y. The basic biology of HER2. Ann. Oncol. 2001, 12, S3–S8.

[6]

Ligibel, J. A. Could the women’s health initiative breathe new life into breast cancer prevention. J. Clin. Oncol. 2020, 38, 1375–1377.

[7]

Kamgar, M.; Assad, H.; Hastert, T. A.; McLaughlin, E.; Reding, K.; Paskett, E. D.; Bea, J. W.; Shadyab, A. H.; Neuhouser, M. L.; Nassir, R. et al. Peripheral neuropathy after breast cancer: An analysis of data from the women’s health initiative life and longevity after cancer cohort. J. Clin. Oncol. 2020, 38, e24093.

[8]

Papakonstantinou, A.; Nuciforo, P.; Borrell, M.; Zamora, E.; Pimentel, I.; Saura, C.; Oliveira, M. The conundrum of breast cancer and microbiome - a comprehensive review of the current evidence. Cancer Treat. Rev. 2022, 111, 102470.

[9]

Wolff, A. C.; Hammond, M. E. H.; Allison, K. H.; Harvey, B. E.; Mangu, P. B.; Bartlett, J. M. S.; Bilous, M.; Ellis, I. O.; Fitzgibbons, P.; Hanna, W. et al. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of american pathologists clinical practice guideline focused update. Arch. Pathol. Lab. Med. 2018, 142, 1364–1382.

[10]

Xu, B.; Shen, J. G.; Guo, W. H.; Zhao, W. H.; Zhuang, Y. Y.; Wang, L. B. Impact of the 2018 ASCO/CAP HER2 guidelines update for HER2 testing by FISH in breast cancer. Pathol. Res. Pract. 2019, 215, 251–255.

[11]
Perez, E. A.; Cortés, J.; Gonzalez-Angulo, A. M.; Bartlett, J. M. S. HER2 testing: Current status and future directions. Cancer Treat. Rev. 2014 , 40, 276–284.
[12]

Shamshirian, A.; Aref, A. R.; Yip, G. W.; Ebrahimi Warkiani, M.; Heydari, K.; Razavi Bazaz, S.; Hamzehgardeshi, Z.; Shamshirian, D.; Moosazadeh, M.; Alizadeh-Navaei, R. Diagnostic value of serum HER2 levels in breast cancer: A systematic review and meta-analysis. BMC Cancer. 2020, 20, 1049.

[13]

Lam, L.; McAndrew, N.; Yee, M.; Fu, T.; Tchou, J. C.; Zhang, H. T. Challenges in the clinical utility of the serum test for HER2 ECD. Biochim. Biophys. Acta Rev. Cancer. 2012, 1826, 199–208.

[14]
Tsé, C.; Gauchez, A. S.; Jacot, W.; Lamy, P. J. HER2 shedding and serum HER2 extracellular domain: Biology and clinical utility in breast cancer. Cancer Treat. Rev. 2012 , 38, 133–142.
[15]

Alhalwani, A. Y.; Repine, J. E.; Knowles, M. K.; Huffman, J. A. Development of a sandwich ELISA with potential for selective quantification of human lactoferrin protein nitrated through disease or environmental exposure. Anal. Bioanal. Chem. 2018, 410, 1389–1396.

[16]

Moelans, C. B.; de Weger, R. A.; Van der Wall, E.; van Diest, P. J. Current technologies for HER2 testing in breast cancer. Crit. Rev. Oncol. Hematol. 2011, 80, 380–392.

[17]

Ahirwar, R. Recent advances in nanomaterials-based electrochemical immunosensors and aptasensors for HER2 assessment in breast cancer. Microchim. Acta 2021, 188, 317.

[18]

Lah, Z. M. A. N. H.; Ahmad, S. A. A.; Zaini, M. S.; Kamarudin, M. A. An electrochemical sandwich immunosensor for the detection of HER2 using antibody-conjugated PbS quantum dot as a label. J. Pharm. Biomed. Anal. 2019, 174, 608–617.

[19]

Freitas, M.; Nouws, H. P. A.; Keating, E.; Delerue-Matos, C. High-performance electrochemical immunomagnetic assay for breast cancer analysis. Sens. Actuators B Chem. 2020, 308, 127667.

[20]

Marques, R. C. B.; Viswanathan, S.; Nouws, H. P. A.; Delerue-Matos, C.; González-García, M. B. Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. Talanta 2014, 129, 594–599.

[21]

Chu, H. W.; Liu, C. H.; Liu, J. S.; Yang, J.; Li, Y. C.; Zhang, X. J. Recent advances and challenges of biosensing in point-of-care molecular diagnosis. Sens. Actuators B Chem. 2021, 348, 130708.

[22]

Yang, J. C.; Wang, K.; Xu, H.; Yan, W. Q.; Jin, Q. H.; Cui, D. X. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review. Talanta 2019, 202, 96–110.

[23]

Zhu, G. Y.; Yin, X. D.; Jin, D. L.; Zhang, B.; Gu, Y. Y.; An, Y. R. Paper-based immunosensors: Current trends in the types and applied detection techniques. Trends Analyt. Chem. 2019, 111, 100–117.

[24]

Mahmoudi, T.; de la Guardia, M.; Baradaran, B. Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends. Trends Analyt. Chem. 2020, 125, 115842.

[25]

Lou, D. D.; Fan, L.; Jiang, T.; Zhang, Y. Advances in nanoparticle-based lateral flow immunoassay for point-of-care testing. VIEW 2022, 3, 20200125.

[26]

Nguyen, V. T.; Song, S.; Park, S.; Joo, C. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens. Bioelectron. 2020, 152, 112015.

[27]

Jiang, N.; Ahmed, R.; Damayantharan, M.; Ünal, B.; Butt, H.; Yetisen, A. K. Lateral and vertical flow assays for point-of-care diagnostics. Adv. Healthc. Mater. 2019, 8, 1900244.

[28]

Urusov, A. E.; Zherdev, A. V.; Dzantiev, B. B. Towards lateral flow quantitative assays: Detection approaches. Biosensors 2019, 9, 89.

[29]

Lu, Z. D.; O’Dell, D.; Srinivasan, B.; Rey, E.; Wang, R. S.; Vemulapati, S.; Mehta, S.; Erickson, D. Rapid diagnostic testing platform for iron and vitamin A deficiency. Proc. Natl. Acad. Sci. USA 2017, 114, 13513–13518.

[30]

Ye, L. Y.; Xu, L. G.; Kuang, H.; Xu, X. X.; Xu, C. L. Colloidal gold-based immunochromatographic biosensor for quantitative detection of S100B in serum samples. Nanoscale Horiz. 2023, 8, 1253–1261.

[31]

Ye, L. Y.; Xu, X. X.; Song, S. S.; Xu, L. G.; Kuang, H.; Xu, C. L. Rapid colloidal gold immunochromatographic assay for the detection of SARS-CoV-2 total antibodies after vaccination. J. Mater. Chem. B 2022, 10, 1786–1794.

[32]

Ye, L. Y.; Lei, X. L.; Xu, L. G.; Kuang, H.; Xu, C. L.; Xu, X. X. Gold nanoparticle-based immunochromatographic assay for the rapid detection of the SARS-CoV-2 Omicron variant. Mater. Chem. Front. 2023, 7, 4063–4072.

[33]

Guo, L. L.; Xu, X. X.; Zhao, J.; Hu, S. D.; Xu, L. G.; Kuang, H.; Xu, C. L. Multiple detection of 15 triazine herbicides by gold nanoparticle based-paper sensor. Nano Res. 2022, 15, 5483–5491.

[34]

Lei, X. L.; Xu, X. X.; Wang, L.; Zhou, W.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L. A quadruplex immunochromatographic assay for the ultrasensitive detection of 11 anesthetics. Nano Res. 2023, 16, 11269–11277.

[35]

Zeng, L.; Xu, X. X.; Song, S. S.; Xu, L. G.; Liu, L. Q.; Xiao, J.; Xu, C. L.; Kuang, H. Synthesis of haptens and gold-based immunochromatographic paper sensor for vitamin B6 in energy drinks and dietary supplements. Nano Res. 2022, 15, 2479–2488.

[36]

Lei, X. L.; Xu, X. X.; Liu, L. Q.; Xu, L. G.; Wang, L.; Kuang, H.; Xu, C. L. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Res. 2023, 16, 1259–1268.

[37]

Yu, X. C.; McGraw, P. A.; House, F. S.; Crowe, J. E. An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies. J. Immunol. Methods 2008, 336, 142–151.

[38]

Zeng, L.; Guo, L. L.; Wang, Z. X.; Xu, X. X.; Ding, H. L.; Song, S. S.; Xu, L. G.; Kuang, H.; Xu, C. L. Gold nanoparticle-based immunochromatographic assay for detection Pseudomonas aeruginosa in water and food samples. Food Chem. X 2021, 9, 100117.

[39]

Liu, J. J.; Cui, D. X.; Jiang, Y.; Li, Y. Y.; Liu, Z. X.; Tao, L.; Zhao, Q.; Diao, A. P. Selection and characterization of a novel affibody peptide and its application in a two-site ELISA for the detection of cancer biomarker alpha-fetoprotein. Int. J. Biol. Macromol. 2021, 166, 884–892.

[40]

Guliy, O. I.; Velichko, N. S.; Fedonenko, Y. P.; Bunin, V. D. Use of an electro-optical sensor and phage antibodies for immunodetection of Herbaspirillum. Talanta 2019, 202, 362–368.

[41]

Wang, Z. X.; Wu, X. L.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L. An immunochromatographic strip sensor for sildenafil and its analogues. J. Mater. Chem. B 2019, 7, 6383–6389.

[42]

Lu, Q. Q.; Ding, H. L.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L.; Guo, L. L. Immunochromatographic assay for rapid detection of flupyradifurone in grape, blueberry, and tomato samples. Food Chem. 2024, 433, 137328.

[43]

Liu, J.; Xu, X. X.; Wu, A. H.; Song, S. S.; Xu, L. G.; Xu, C. L.; Kuang, H.; Liu, L. Q. Immunochromatographic assay for the rapid and sensitive detection of etoxazole in orange and grape samples. LWT 2022, 163, 113519.

[44]

Han, H.; Wang, C. W.; Yang, X. S.; Zheng, S.; Cheng, X. D.; Liu, Z. Z.; Zhao, B. H.; Xiao, R. Rapid field determination of SARS-CoV-2 by a colorimetric and fluorescent dual-functional lateral flow immunoassay biosensor. Sens. Actuators B Chem. 2022, 351, 130897.

[45]

Wang, C. W.; Yang, X. S.; Zheng, S.; Cheng, X. D.; Xiao, R.; Li, Q. J.; Wang, W. Q.; Liu, X. X.; Wang, S. Q. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. Sens. Actuators B Chem. 2021, 345, 130372.

[46]

Zhou, S.; Peng, Y. L.; Hu, J.; Duan, H.; Ma, T. T.; Hou, L.; Li, X. M.; Xiong, Y. H. Quantum dot nanobead-based immunochromatographic assay for the quantitative detection of the procalcitonin antigen in serum samples. Microchem. J. 2020, 159, 105533.

[47]

Geistanger, A.; Braese, K.; Laubender, R. Automated data analytics workflow for stability experiments based on regression analysis. J. Mass. Spectrom Adv. Clin. Lab. 2022, 24, 5–14.

Nano Research
Pages 5452-5460
Cite this article:
Ye L, Xu X, Qu A, et al. Quantitative assessment of the breast cancer marker HER2 using a gold nanoparticle-based lateral flow immunoassay. Nano Research, 2024, 17(6): 5452-5460. https://doi.org/10.1007/s12274-024-6471-2
Topics:

506

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 29 November 2023
Revised: 26 December 2023
Accepted: 03 January 2024
Published: 01 February 2024
© Tsinghua University Press 2024
Return