AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-efficiency Ce-modified ZSM-5 nanosheets for waste plastic upgrading

Xiaomei Wang1,2Xueting Wu1,2Meng Zhao1,2Rui Zhang1,2Zijian Wang1,2Yuou Li1,2Liangliang Zhang1( )Xiao Wang1,2( )Shuyan Song1,2( )Hongjie Zhang1,2,3
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Catalyzed by Ce/b-ZSM-5, low-density polyethylene (LDPE) was hydrocracked with high conversion up to 96.3%, C3−C5 alkanes selectivity up to 80.9%, and good stability. The nanosheets improved the diffusion efficiency and the Ce species modulated the concentration of acid sites, which enhances the adsorption of substrates and facilitates the formation of intermediates and desorption of products, resulting in improved performance.

Abstract

Zeolite-based catalyst hydrocracking of plastics is a potential strategy for mitigating the environmental impacts of plastic wastes and recycling valuable resources, but difficult mass transfer, low concentration of acid sites, and high cost are still barriers to their practical applications. In this paper, we report an excellent hydrocracking catalyst of ZSM-5 nanosheets (Ce/b-ZSM-5) modified by Ce species with high conversion up to 96.3%, C3−C5 selectivity up to 80.9%, and good stability during the hydrogenation of low-density polyethylene. Through comprehensive studies, b-ZSM-5 shows higher molecular diffusion efficiency and acid site concentrations compared with normal ZSM-5 (n-ZSM-5) and hollow ZSM-5 (h-ZSM-5). The introduction of Ce species into b-ZSM-5 further increases the density of Brønsted (B) and Lewis (L) acid sites as active sites, which enhances the adsorption of substrates and facilitates the formation of intermediates and desorption of products. As a result, the hydrocracking activity of Ce/b-ZSM-5 is significantly improved.

Electronic Supplementary Material

Download File(s)
12274_2024_6475_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Rochman, C. M.; Hoellein, T. The global odyssey of plastic pollution. Science 2020, 368, 1184–1185.

[2]

MacLeod, M.; Arp, H. P. H.; Tekman, M. B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65.

[3]

Van Geem, K. M. Plastic waste recycling is gaining momentum. Science 2023, 381, 607–608.

[4]

Sardon, H.; Dove, A. P. Plastics recycling with a difference. Science 2018, 360, 380–381.

[5]

Wang, M.; Ma, D. Upcycling contaminated plastics. Nat. Sustain. 2023, 6, 1151–1152.

[6]

Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y. X.; Leibfarth, F. A.; Sardon, H. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022, 603, 803–814.

[7]

Weckhuysen, B. M. Creating value from plastic waste. Science 2020, 370, 400–401.

[8]

Zhang, M. Q.; Wang, M.; Sun, B.; Hu, C. Q.; Xiao, D. Q.; Ma, D. Catalytic strategies for upvaluing plastic wastes. Chem 2022, 8, 2912–2923.

[9]

Dong, Q.; Lele, A. D.; Zhao, X. P.; Li, S. K.; Cheng, S. C.; Wang, Y. Q.; Cui, M. J.; Guo, M.; Brozena, A. H.; Lin, Y. et al. Depolymerization of plastics by means of electrified spatiotemporal heating. Nature 2023, 616, 488–494.

[10]

Rahman, M. Z.; Raziq, F.; Zhang, H. B.; Gascon, J. Key Strategies for enhancing H2 production in transition metal oxide based photocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202305385.

[11]

Martín, A. J.; Mondelli, C.; Jaydev, S. D.; Pérez-Ramírez, J. Catalytic processing of plastic waste on the rise. Chem 2021, 7, 1487–1533.

[12]

Zhang, F.; Wang, F.; Wei, X. Y.; Yang, Y.; Xu, S. M.; Deng, D. H.; Wang, Y. Z. From trash to treasure: Chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials. J. Energy Chem. 2022, 69, 369–388.

[13]

Dong, Z. W.; Chen, W. J.; Xu, K. Q.; Liu, Y.; Wu, J.; Zhang, F. Understanding the structure–activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: A critical review. ACS Catal. 2022, 12, 14882–14901.

[14]

Li, L.; Luo, H.; Shao, Z. L.; Zhou, H. Z.; Lu, J. W.; Chen, J. J.; Huang, C. J.; Zhang, S. N.; Liu, X. F.; Xia, L. et al. Converting plastic wastes to naphtha for closing the plastic loop. J. Am. Chem. Soc. 2023, 145, 1847–1854.

[15]

Rorrer, J. E.; Ebrahim, A. M.; Questell-Santiago, Y.; Zhu, J.; Troyano-Valls, C.; Asundi, A. S.; Brenner, A. E.; Bare, S. R.; Tassone, C. J.; Beckham, G. T. et al. Role of bifunctional Ru/acid catalysts in the selective hydrocracking of polyethylene and polypropylene waste to liquid hydrocarbons. ACS Catal. 2022, 12, 13969–13979.

[16]

Duan, J. D.; Chen, W.; Wang, C. T.; Wang, L.; Liu, Z. Q.; Yi, X. F.; Fang, W.; Wang, H.; Wei, H.; Xu, S. D. et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion. J. Am. Chem. Soc. 2022, 144, 14269–14277.

[17]

Liu, S. B.; Kots, P. A.; Vance, B. C.; Danielson, A.; Vlachos, D. G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 2021, 7, eabf8283.

[18]

Shu, Y. Y.; Travert, A.; Schiller, R.; Ziebarth, M.; Wormsbecher, R.; Cheng, W. C. Effect of ionic radius of rare earth on USY zeolite in fluid catalytic cracking: Fundamentals and commercial application. Top. Catal. 2015, 58, 334–342.

[19]

Li, J. C.; Zeng, P. H.; Zhao, L.; Ren, S. Y.; Guo, Q. X.; Zhao, H. J.; Wang, B. J.; Liu, H. H.; Pang, X. M.; Gao, X. H. et al. Tuning of acidity in CeY catalytic cracking catalysts by controlling the migration of Ce in the ion exchange step through valence changes. J. Catal. 2015, 329, 441–448.

[20]

Huang, W. H.; Su, C. Y.; Zhu, C.; Bo, T. T.; Zuo, S. W.; Zhou, W.; Ren, Y. F.; Zhang, Y. N.; Zhang, J.; Rueping, M. et al. Isolated electron trap-induced charge accumulation for efficient photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2023, 62, e202304634.

[21]

Schüßler, F.; Schallmoser, S.; Shi, H.; Haller, G. L.; Ember, E.; Lercher, J. A. Enhancement of dehydrogenation and hydride transfer by La3+ cations in zeolites during acid catalyzed alkane reactions. ACS Catal. 2014, 4, 1743–1752.

[22]

Li, X. H.; Zhang, X. L.; Shao, S. S.; Dong, L. X.; Zhang, J.; Hu, C.; Cai, Y. X. Catalytic upgrading of pyrolysis vapor from rape straw in a vacuum pyrolysis system over La/HZSM-5 with hierarchical structure. Bioresour. Technol. 2018, 259, 191–197.

[23]

He, J. Q.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene. Appl. Catal. B: Environ. 2020, 265, 118560.

[24]

Chen, G. R.; Li, J. Y.; Wang, S.; Han, J.; Wang, X. X.; She, P. H.; Fan, W. B.; Guan, B. Y.; Tian, P.; Yu, J. H. Construction of single-crystalline hierarchical ZSM-5 with open nanoarchitectures via anisotropic-kinetics transformation for the methanol-to-hydrocarbons reaction. Angew. Chem., Int. Ed. 2022, 61, e202200677.

[25]

Wang, C. T.; Fang, W.; Liu, Z. Q.; Wang, L.; Liao, Z. W.; Yang, Y. R.; Li, H. J.; Liu, L.; Zhou, H.; Qin, X. D. et al. Fischer-Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nat. Nanotechnol. 2022, 17, 714–720.

[26]

Zhang, H. B.; Zuo, S. W.; Qiu, M.; Wang, S. B.; Zhang, Y. F.; Zhang, J.; Lou, X. W. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eabb9823.

[27]

Qian, K. Z.; Tian, W. M.; Yin, L. J.; Yang, Z. X.; Tian, F. X.; Chen, D. Z. Aromatic production from high-density polyethylene over zinc promoted HZSM-5. Appl. Catal. B: Environ. 2023, 339, 123159.

[28]

Zhang, Y. W.; Xue, M. W.; Zhou, Y. M.; Zhang, H. X.; Wang, W.; Wang, Q. L.; Sheng, X. L. Propane dehydrogenation over Ce-containing ZSM-5 supported platinum-tin catalysts: Ce concentration effect and reaction performance analysis. RSC Adv. 2016, 6, 29410–29422.

[29]

Shao, X. L.; Wang, S. Q.; Zhou, Y. H.; Zhang, X.; Tian, H. Z.; Wang, Z.; Yuan, Z. Y.; Wang, H. T. Synthesis of multilamellar ZSM-5 nanosheets with tailored b-axis thickness. Microporous Mesoporous Mater. 2022, 345, 112252.

[30]

Ma, Z. X.; Wang, X. X.; Ma, X. L.; Tan, M. H.; Yang, G. H.; Tan, Y. S. Catalytic roles of acid property in different morphologies of H-ZSM-5 zeolites for syngas-to-aromatics conversion over ZnCrO x /H-ZSM-5 catalysts. Microporous Mesoporous Mater. 2023, 349, 112420.

[31]

Gu, J.; Wu, Y. J.; Jin, Y. H.; Wang, J. Hydrothermal incorporation of Ce(La) ions into the framework of ZSM-5 by a multiple pH-adjusting co-hydrolysis. J. Porous Mater. 2013, 20, 7–13.

[32]

Xu, Z. H.; Ye, K. H.; Zheng, Y. Y.; Liang, Z. T.; Tang, T. X.; Zhang, Y.; He, X. H.; Ji, H. B. Low cost and highly dispersed Ce/Na-ZSM-5 catalysts close to atomic dispersion for enhancing formaldehyde oxidation. Dalton Trans. 2023, 52, 5427–5432.

[33]

Meng, G.; Chang, Z. W.; Cui, X. Z.; Tian, H.; Ma, Z. H.; Peng, L. X.; Chen, Y. F.; Chen, C.; Shi, J. L. SnO2/CeO2 nanoparticle-decorated mesoporous ZSM-5 as bifunctional electrocatalyst for HOR and ORR. Chem. Eng. J. 2021, 417, 127913.

[34]

Jaydev, S. D.; Martín, A. J.; Pérez-Ramírez, J. Direct conversion of polypropylene into liquid hydrocarbons on carbon-supported platinum catalysts. ChemSusChem 2021, 14, 5179–5185.

[35]

Sivasankar, N.; Vasudevan, S. Adsorption of n-hexane in Zeolite-5A: A temperature-programmed desorption and IR-spectroscopic study. J. Phys. Chem. B 2005, 109, 15417–15421.

[36]

Makowski, W.; Majda, D. Temperature programmed desorption of n-hexane and n-heptane from MFI and FAU zeolites. J. Porous Mater. 2007, 14, 27–35.

[37]
Feng, C. Y.; Bo, T. T.; Maity, P.; Zuo, S. W.; Zhou, W.; Huang, K. W.; Mohammed, O. F.; Zhang, H. B. Regulating photocatalytic CO2 reduction kinetics through modification of surface coordination sphere. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202309761.
[38]

Jia, Y. M.; Wang, J. W.; Zhang, K.; Feng, W.; Liu, S. B.; Ding, C. M.; Liu, P. Promoted effect of zinc-nickel bimetallic oxides supported on HZSM-5 catalysts in aromatization of methanol. J. Energy Chem. 2017, 26, 540–548.

[39]

Fu, L. C.; Lin, H. P.; Zhu, L. K.; Wang, Q. H.; Luo, H.; Xiong, Q. G.; Vladimirovich, V. S.; Zhou, Y. F. Enhancing catalytic performance for waste plastic upgrading: Simultaneous regulation of pore structure and acid sites in Ga-doped desilicated HZSM-5 catalysts. J. Anal. Appl. Pyrol. 2023, 175, 106186.

[40]

Phung, T. K.; Radikapratama, R.; Garbarino, G.; Lagazzo, A.; Riani, P.; Busca, G. Tuning of product selectivity in the conversion of ethanol to hydrocarbons over H-ZSM-5 based zeolite catalysts. Fuel Process. Technol. 2015, 137, 290–297.

[41]

Emeis, C. A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 141, 347–354.

Nano Research
Pages 5645-5650
Cite this article:
Wang X, Wu X, Zhao M, et al. High-efficiency Ce-modified ZSM-5 nanosheets for waste plastic upgrading. Nano Research, 2024, 17(6): 5645-5650. https://doi.org/10.1007/s12274-024-6475-y
Topics:

875

Views

4

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 22 November 2023
Revised: 05 January 2024
Accepted: 07 January 2024
Published: 07 March 2024
© Tsinghua University Press 2024
Return