Journal Home > Volume 17 , Issue 6

Developing non-precious metal-based bifunctional electrocatalysts capable for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential to achieve efficient water electrolysis for mass hydrogen production, however it remains challenging. Here, we report the synthesis of hierarchical nanorod arrays comprising core–shell structured P-doped NiMoO4@NiFe-coordination polymer (denoted as P-NiMoO4@NiFeCP) as bifunctional electrocatalysts for water electrolysis. Furthermore, we systematically investigate the influence of NiFeCP shell thickness on electrocatalytic activity, manifesting the presence of strong interfacial synergetic effect between P-NiMoO4 and NiFeCP for boosting both the HER and OER. With advantageous hierarchical architectures and unique core–shell structures, optimized P-NiMoO4@NiFeCP-7.3 (7.3 is the shell thickness in nm) requires overpotentials of merely 256 and 297 mV to yield a current density of 1000 mA·cm−2 for the HER and OER in 1 M KOH, respectively. More importantly, it can serve as a bifunctional electrocatalyst for efficient and sustainable overall water electrolysis, delivering large current densities of 500 and 1000 mA·cm−2 at low cell voltages of 1.804 and 1.865 V, along with high stability of over 500 h at 1000 mA·cm−2, demonstrating the great potential of this electrocatalyst towards practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Constructing hierarchical arrays with core–shell metal oxides@metal coordination polymers for efficient and stable overall water splitting

Show Author's information Shuai Qi,§Jinlian Liao,§Kunzhong ChenSenkai LiJinwen ZhaoTianchi HuangNa MengHengpan YangQi Hu( )Chuanxin He( )
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China

§ Shuai Qi and Jinlian Liao contributed equally to this work.

Abstract

Developing non-precious metal-based bifunctional electrocatalysts capable for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential to achieve efficient water electrolysis for mass hydrogen production, however it remains challenging. Here, we report the synthesis of hierarchical nanorod arrays comprising core–shell structured P-doped NiMoO4@NiFe-coordination polymer (denoted as P-NiMoO4@NiFeCP) as bifunctional electrocatalysts for water electrolysis. Furthermore, we systematically investigate the influence of NiFeCP shell thickness on electrocatalytic activity, manifesting the presence of strong interfacial synergetic effect between P-NiMoO4 and NiFeCP for boosting both the HER and OER. With advantageous hierarchical architectures and unique core–shell structures, optimized P-NiMoO4@NiFeCP-7.3 (7.3 is the shell thickness in nm) requires overpotentials of merely 256 and 297 mV to yield a current density of 1000 mA·cm−2 for the HER and OER in 1 M KOH, respectively. More importantly, it can serve as a bifunctional electrocatalyst for efficient and sustainable overall water electrolysis, delivering large current densities of 500 and 1000 mA·cm−2 at low cell voltages of 1.804 and 1.865 V, along with high stability of over 500 h at 1000 mA·cm−2, demonstrating the great potential of this electrocatalyst towards practical applications.

Keywords: oxygen evolution reaction, hydrogen evolution reaction, overall water splitting, core–shell structures, non-precious metal-based electrocatalysts

References(34)

[1]

Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304–307.

[2]

Shan, J. Q.; Ye, C.; Chen, S. M.; Sun, T. L.; Jiao, Y.; Liu, L. M.; Zhu, C. Z.; Song, L.; Han, Y.; Jaroniec, M. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201–5211.

[3]

Nenoff, T. M.; Berman, M. R.; Glasgow, K. C.; Cesa, M. C.; Taft, H. Introduction to the special section on alternative energy systems: Hydrogen, solar, and biofuels. Ind. Eng. Chem. Res. 2012, 51, 11819–11820.

[4]

Hu, Q.; Gao, K. R.; Wang, X. D.; Zheng, H. J.; Cao, J. Y.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 3958.

[5]

Midilli, A.; Dincer, I. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. Int. J. Hyd. Energy 2008, 33, 4209–4222.

[6]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[7]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[8]

Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

[9]

Hu, Q.; Li, G. M.; Li, G. D.; Liu, X. F.; Zhu, B.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. Trifunctional electrocatalysis on dual-doped graphene nanorings-integrated boxes for efficient water splitting and Zn-air batteries. Adv. Energy Mater. 2019, 9, 1803867.

[10]

Hu, Q.; Wang, Z. Y.; Huang, X. W.; Qin, Y. J.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. A unique space confined strategy to construct defective metal oxides within porous nanofibers for electrocatalysis. Energy Environ. Sci. 2020, 13, 5097–5103.

[11]
Wang, L. L.; Zhang, Y. X.; Gu, C.; Yu, H. X.; Zhuang, Y. L.; Zhuang, Z. C. Diverse atomic structure configurations of metal-doped transition metal dichalcogenides for enhancing hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-023-6374-7.
[12]
Yu, H. X.; Pan, J. A.; Zhang, Y. X.; Wang, L. L.; Ji, H. H.; Xu, K. Y.; Zhi, T.; Zhuang, Z. H. Designing multi-heterogeneous interfaces of Ni-MoS2@NiS2@Ni3S2 hybrid for hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-024-6430-y.
[13]

Li, X.; Zhang, H.; Li, X.; Hu, Q.; Deng, C.; Jiang, X.; Yang, H.; He, C. Janus heterostructure of cobalt and iron oxide as dual-functional electrocatalysts for overall water splitting. Nano Res. 2022, 16, 2245–2251.

[14]

He, Y. J.; Shen, J.; Li, Q.; Zheng, X. Z.; Wang, Z. X.; Cui, L.; Xu, J. T.; Liu, J. Q. In-situ growth of VS4 nanorods on Ni-Fe sulfides nanoplate array towards achieving a highly efficient and bifunctional electrocatalyst for total water splitting. Chem. Eng. J. 2023, 474, 145461.

[15]

You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001.

[16]

Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695.

[17]

Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

[18]

Zhou, X. Y.; Yang, T. T.; Li, T.; Zi, Y. J.; Zhang, S. J.; Yang, L.; Liu, Y. K.; Yang, J.; Tang, J. L. In-situ fabrication of carbon compound NiFeMo-P anchored on nickel foam as bi-functional catalyst for boosting overall water splitting. Nano Res. Energy 2023, 2, e9120086.

[19]

Wu, L. B.; Zhang, F. H.; Song, S. W.; Ning, M. H.; Zhu, Q.; Zhou, J. Q.; Gao, G. H.; Chen, Z. Y.; Zhou, Q. C.; Xing, X. X. et al. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics. Adv. Mater. 2022, 34, 2201774.

[20]

Lv, H. F.; Xi, Z.; Chen, Z. Z.; Guo, S. J.; Yu, Y. S.; Zhu, W. L.; Li, Q.; Zhang, X.; Pan, M.; Lu, G. et al. A new core/shell NiAu/Au nanoparticle catalyst with Pt-like activity for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 5859–5862.

[21]

Yan, M. L.; Zhao, Z. Y.; Cui, P. Z.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe,Ni)S2 core–shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

[22]

Xiong, T. Z.; Huang, B. W.; Wei, J. J.; Yao, X. C.; Xiao, R.; Zhu, Z. X.; Yang, F.; Huang, Y. C.; Yang, H.; Balogun, M. S. Unveiling the promotion of accelerated water dissociation kinetics on the hydrogen evolution catalysis of NiMoO4 nanorods. J. Energy Chem. 2022, 67, 805–813.

[23]

Wu, N.; Lei, Y. P.; Wang, Q. C.; Wang, B.; Han, C.; Wang, Y. D. Facile synthesis of FeCo@NC core–shell nanospheres supported on graphene as an efficient bifunctional oxygen electrocatalyst. Nano Res. 2017, 10, 2332–2343.

[24]

Hu, S.; Xiang, C. L.; Zou, Y. J.; Xu, F.; Sun, L. X. Synthesis of NiMoO4/NiMo@NiS nanorods for efficient hydrogen evolution reactions in electrocatalysts. Nanomaterials 2023, 13, 1871.

[25]

Zhai, P. L.; Wang, C.; Zhao, Y. Y.; Zhang, Y. X.; Gao, J. F.; Sun, L. C.; Hou, J. G. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Commun. 2023, 14, 1873.

[26]

Li, W. L.; Li, F. S.; Yang, H.; Wu, X. J.; Zhang, P. L.; Shan, Y.; Sun, L. C. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 2019, 10, 5074.

[27]

Wang, Z. Y.; Chen, J. Y.; Song, E. H.; Wang, N.; Dong, J. C.; Zhang, X.; Ajayan, P. M.; Yao, W.; Wang, C. F.; Liu, J. J. et al. Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution. Nat. Commun. 2021, 12, 5960.

[28]

Zeng, J. R.; Chen, W. H.; Zhang, G. W.; Yang, S. H.; Yu, L.; Cao, X.; Chen, H. H.; Liu, Y.; Song, L. J.; Qiu, Y. J. In-situ prepared NiMoO4 nanocrystals synergizes with nickel micro-tubes with hydrodynamic effects for energy-saving watersplitting. Chem. Eng. J. 2023, 471, 144657.

[29]

Guo, L. L.; Chi, J. Q.; Zhu, J. W.; Cui, T.; Lai, J. P.; Wang, L. Dual-doping NiMoO4 with multi-channel structure enable urea-assisted energy-saving H2 production at large current density in alkaline seawater. Appl. Catal. B 2023, 320, 121977.

[30]

Liu, M.; Zhao, H.; Du, X. Q.; Zhang, X. S. The synthesis of Cr and P codoped NiMoO4 nanospheres as efficient catalyst for urea oxidation and oxygen evolution reaction. Int. J. Hyd. Energy 2023, 48, 38143–38155.

[31]

Ma, L. B.; Hu, Y.; Chen, R. P.; Zhu, G. Y.; Chen, T.; Lv, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 2016, 24, 139–147.

[32]

Zhou, W. L.; Li, X. J.; Li, X.; Shao, J. X.; Yang, H. P.; Chai, X. Y.; Hu, Q.; He, C. X. Crafting amorphous VO2-crystalline NiS2 heterostructures as bifunctional electrocatalysts for efficient water splitting: The different cocatalytic function of VO2. Chem. Eng. J. 2023, 470, 144146.

[33]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[34]

Li, X.; Deng, C.; Kong, Y.; Huo, Q. H.; Mi, L. R.; Sun, J. J.; Cao, J. Y.; Shao, J. X.; Chen, X. B.; Zhou, W. L. et al. Unlocking the transition of electrochemical water oxidation mechanism induced by heteroatom doping. Angew. Chem., Int. Ed. 2023, 62, e202309732.

File
12274_2024_6476_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 December 2023
Revised: 04 January 2024
Accepted: 07 January 2024
Published: 22 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the Shenzhen Science and Technology Program (Nos. SGDX20201103095802006, RCYX20200714114535052, JCYJ20190808150001775, and JCYJ20190808143007479) and the National Natural Science Foundation of China (Nos. U21A20312 and 21975162). We also acknowledge the Instrumental Analysis Centre of Shenzhen University for performing TEM.

Return