AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tailoring crystallization zinc hydroxide sulfates growth towards stable zinc deposition chemistry

Kaixin Huang1,2Xianguang Zeng1Dan Zhang1Yujie Wang2( )Mu Lan3Chengyan Wen1Yi Guo3( )
College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Department of Chemistry, College of Resource and Environment, Baoshan University, Baoshan 678000, China
College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
Show Author Information

Graphical Abstract

The growth of by-products (zinc hydroxide sulfates, ZHS) at zinc anode/electrolyte interfaces is regulated by Tween 80 and thereby they are turned to dense and zincophilic solid electrolyte interface (SEI). This SEI protects the zinc anode from corrosion but also endows calm zinc deposition chemistry.

Abstract

The unstable zinc anode/electrolyte interface induced by corrosion, interfacial water splitting reaction, and dendrite growth seriously degrades the performances of metal Zn anode in aqueous electrolyte. Herein, the nucleation and growth of zinc hydroxide sulfate (ZHS), an interfacial by-product, has been tailored by Tween 80 in the electrolyte, which thereby assists in in-situ forming a dense solid electrolyte interphase (SEI) with small-sized ZHS and evenly distributed Tween 80. This SEI has high corrosion resistance and uniform distribution of zinc ions, which not only contributes to blocking the interfacial side reactions but also induces stable and calm zinc plating/stripping. Consequently, the modified electrolyte can confer the assembled Zn||Zn symmetric cell with a stable operation life over 1500 h at 1 mA·cm−2 and 1 mAh·cm−2 as well as the practical Zn||NH4V4O10 full battery with a high-rate capacity of 120 mAh·g−1 at the current density of 5 A·g−1. This work provides a way for regulating and reusing interfacial by-products, and a new sight on stabilization electrodes/electrolyte interfaces.

Electronic Supplementary Material

Download File(s)
12274_2024_6479_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Pathak, R.; Chen, K.; Wu, F.; Mane, A. U.; Bugga, R. V.; Elam, J. W.; Qiao, Q.; Zhou, Y. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Mater. 2021, 41, 448–465.

[2]

Wippermann, K.; Schultze, J. W.; Kessel, R.; Penninger, J. The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives. Corros. Sci. 1991, 32, 205–230.

[3]

Zhou, X. L.; Ma, K. X.; Zhang, Q. Y.; Yang, G. Z.; Wang, C. X. Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive. Nano Res. 2022, 15, 8039–8047.

[4]

Yuan, L. B.; Hao, J. N.; Kao, C. C.; Wu, C.; Liu, H. K.; Dou, S. X.; Qiao, S. Z. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 2021, 14, 5669–5689.

[5]

Shin, J.; Lee, J.; Park, Y.; Choi, J. W. Aqueous zinc ion batteries: Focus on zinc metal anodes. Chem. Sci. 2020, 11, 2028–2044.

[6]

Chen, J. P.; Zhao, W. Y.; Jiang, J. M.; Zhao, X. L.; Zheng, S. H.; Pan, Z. H.; Yang, X. W. Challenges and perspectives of hydrogen evolution-free aqueous Zn-ion batteries. Energy Storage Mater. 2023, 59, 102767.

[7]

Guo, J.; Ming, J.; Lei, Y. J.; Zhang, W. L.; Xia, C.; Cui, Y.; Alshareef, H. N. Artificial solid electrolyte interphase for suppressing surface reactions and cathode dissolution in aqueous zinc ion batteries. ACS Energy Lett. 2019, 4, 2776–2781.

[8]

Xie, C. L.; Li, Y. H.; Wang, Q.; Sun, D.; Tang, Y. G.; Wang, H. Y. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review. Carbon Energy 2020, 2, 540–560.

[9]

Feng, D. D.; Cao, F. Q.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 2021, 17, 2103195.

[10]

Zhang, S. J.; Ye, J. J.; Ao, H. S.; Zhang, M. Y.; Li, X. L.; Xu, Z. B.; Hou, Z. G.; Qian, Y. T. In-situ formation of hierarchical solid-electrolyte interphase for ultra-long cycling of aqueous zinc-ion batteries. Nano Res. 2023, 16, 449–457.

[11]

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

[12]

Qiu, H. Y.; Du, X. F.; Zhao, J. W.; Wang, Y. T.; Ju, J. W.; Chen, Z.; Hu, Z. L.; Yan, D. P.; Zhou, X. H.; Cui, G. L. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 2019, 10, 5374.

[13]

Cao, Z. Y.; Zhu, X. D.; Xu, D. X.; Dong, P.; Chee, M. O. L.; Li, X. J.; Zhu, K. Y.; Ye, M. X.; Shen, J. F. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 2021, 36, 132–138.

[14]

Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.

[15]

Guo, Y.; Liu, C.; Xu, L.; Huang, K. X.; Wu, H.; Cai, W. L.; Zhang, Y. A cigarette filter-derived nitrogen-doped carbon nanoparticle coating layer for stable Zn-ion battery anodes. Energy Mater. 2022, 2, 200032.

[16]

Yan, H. B.; Li, S. M.; Nan, Y.; Yang, S. B.; Li, B. Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 2021, 11, 2100186.

[17]

He, X. F.; Cui, Y. L. S.; Qian, Y. C.; Wu, Y. D.; Ling, H. Y.; Zhang, H. R.; Kong, X. Y.; Zhao, Y.; Xue, M. Q.; Jiang, L. et al. Anion concentration gradient-assisted construction of a solid-electrolyte interphase for a stable zinc metal anode at high rates. J. Am. Chem. Soc. 2022, 144, 11168–11177.

[18]

Di, S. L.; Nie, X. Y.; Ma, G. Q.; Yuan, W. T.; Wang, Y. Y.; Liu, Y. C.; Shen, S. G.; Zhang, N. Zinc anode stabilized by an organic–inorganic hybrid solid electrolyte interphase. Energy Storage Mater. 2021, 43, 375–382.

[19]

Yuan, W. T.; Ma, G. Q.; Nie, X. Y.; Wang, Y. Y.; Di, S. L.; Wang, L. B.; Wang, J.; Shen, S. G.; Zhang, N. In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes. Chem. Eng. J. 2022, 431, 134076.

[20]

Tian, H.; Yang, J. L.; Deng, Y. R.; Tang, W. H.; Liu, R. P.; Xu, C. Y.; Han, P.; Fan, H. Steel anti-corrosion strategy enables long-cycle Zn anode. Adv. Energy Mater. 2023, 13, 2202603.

[21]

Wang, X. Y.; Li, X. M.; Fan, H. Q.; Ma, L. T. Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 2022, 14, 205.

[22]

Yu, X. Y.; Li, Z. G.; Wu, X. H.; Zhang, H. T.; Zhao, Q. G.; Liang, H. F.; Wang, H.; Chao, D. L.; Wang, F.; Qiao, Y. et al. Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 2023, 7, 1145–1175.

[23]

Shah, A. T.; Din, M. I.; Farooq, U.; Butt, M. T. Z.; Athar, M.; Chaudhary, M. A.; Ahmad, M. N.; Mirza, M. L. Fabrication of nickel nanoparticles modified electrode by reverse microemulsion method and its application in electrolytic oxidation of ethanol. Colloid Surf. A 2012, 405, 19–21.

[24]

Liu, Y. Y.; Gu, J. J.; Zhang, J. L.; Yu, F.; Wang, J.; Nie, N.; Li, W. LiFePO4 nanoparticles growth with preferential (010) face modulated by Tween-80. RSC Adv. 2015, 5, 9745–9751.

[25]

Du, W. C.; Ang, E. H.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360.

[26]

Yuan, D.; Manalastas, W.; Zhang, L. P.; Chan, J. J.; Meng, S. Z.; Chen, Y. Q.; Srinivasan, M. Lignin@nafion membranes forming Zn solid-electrolyte interfaces enhance the cycle life for rechargeable zinc-ion batteries. ChemSusChem 2019, 12, 4889–4900.

[27]

Park, S. H.; Byeon, S. Y.; Park, J. H.; Kim, C. Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes. ACS Energy Lett. 2021, 6, 3078–3085.

[28]

Guo, Y.; Cai, W. L.; Lin, Y.; Zhang, Y. Y.; Luo, S.; Huang, K. X.; Wu, H.; Zhang, Y. An ion redistributor enabled by cost-effective weighing paper interlayer for dendrite free aqueous zinc-ion battery. Energy Storage Mater. 2022, 50, 580–588.

[29]

Zhang, Y. J.; Zhu, M.; Wu, K.; Yu, F. F.; Wang, G. Y.; Xu, G.; Wu, M. H.; Liu, H. K.; Dou, S. X.; Wu, C. An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte. J. Mater. Chem. A 2021, 9, 4253–4261.

[30]

Guo, S.; Qin, L. P.; Zhang, T. S.; Zhou, M.; Zhou, J.; Fang, G. Z.; Liang, S. Q. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 2021, 34, 545–562.

[31]

Lu, H. Y.; Liu, L. Y.; Zhang, J. K.; Xu, J. T. Highly durable aqueous Zn ion batteries based on a Zn anode coated by three-dimensional cross-linked and branch-liked bismuth-PVDF layer. J. Colloid Interface Sci. 2022, 617, 422–429.

[32]

Bayaguud, A.; Luo, X.; Fu, Y. P.; Zhu, C. B. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 2020, 5, 3012–3020.

[33]

Zhang, X. M.; Luo, H.; Guo, Y.; Xu, C. H. Y.; Deng, Y.; Deng, Z. W.; Zhang, Y. G.; Wu, H.; Cai, W. L.; Zhang, Y. Chemical and electrochemical synergistic weaving stable interface enabling longevous zinc plating/stripping process. Chem. Eng. J. 2023, 457, 141305.

[34]

Xie, K. X.; Ren, K. X.; Wang, Q. H.; Lin, Y. X.; Ma, F. C.; Sun, C.; Li, Y. W.; Zhao, X. S.; Lai, C. In situ construction of zinc-rich polymeric solid-electrolyte interface for high-performance zinc anode. eScience 2023, 3, 100153.

[35]

Tang, B. Y.; Zhou, J.; Fang, G. Z.; Liu, F.; Zhu, C. Y.; Wang, C.; Pan, A. Q.; Liang, S. Q. Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A 2019, 7, 940–945.

[36]

Sun, R.; Qin, Z. X.; Liu, X. L.; Wang, C. H.; Lu, S. J.; Zhang, Y. F.; Fan, H. S. Intercalation mechanism of the ammonium vanadate (NH4V4O10) 3D decussate superstructure as the cathode for high-performance aqueous zinc-ion batteries. ACS Sustainable Chem. Eng. 2021, 9, 11769–11777.

Nano Research
Pages 5243-5250
Cite this article:
Huang K, Zeng X, Zhang D, et al. Tailoring crystallization zinc hydroxide sulfates growth towards stable zinc deposition chemistry. Nano Research, 2024, 17(6): 5243-5250. https://doi.org/10.1007/s12274-024-6479-7
Topics:

964

Views

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 16 November 2023
Revised: 05 January 2024
Accepted: 09 January 2024
Published: 08 February 2024
© Tsinghua University Press 2024
Return