Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrocatalytic nitrate (NO3−) reduction to ammonia (NH3) offers a viable approach for sustainable NH3 production and environmental denitrification. Copper (Cu) possesses a distinctive electronic structure, which can augment the reaction kinetics of NO3− and impede hydrogen evolution reaction (HER), rendering it a promising contender for the electrosynthesis of NH3 from NO3−. Nevertheless, the role of Cu2O in copper-based catalysts still requires further investigation for a more comprehensive understanding. Herein, the Cu2O/Cu(OH)2 heterostructures are successfully fabricated through liquid laser irradiation using CuO nanoparticles as a precursor. Experimental and theoretical researches reveal that Cu2O/Cu(OH)2 heterostructure exhibits enhanced electrocatalytic performance for NO3− to NH3 because Cu(OH)2 promotes electron transfer and reduces the valence state of Cu active site in Cu2O. At −0.6 V (vs. reversible hydrogen electrode (RHE)), the NH3 yield reaches its maximum at 1630.66 ± 29.72 μg·h−1·mgcat−1, while the maximum of Faraday efficiency (FE) is 76.95% ± 5.51%. This study expands the technical scope of copper-based catalyst preparation and enhances the understanding of the electrocatalytic mechanism of NO3− to NH3.
Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.
Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.
Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.
Wu, L. M.; Feng, J. Q.; Zhang, L. B.; Jia, S. H.; Song, X. N.; Zhu, Q. G.; Kang, X. C.; Xing, X. Q.; Sun, X. F.; Han, B. X. Boosting electrocatalytic nitrate-to-ammonia via tuning of n-intermediate adsorption on a Zn-Cu catalyst. Angew. Chem. 2023, 135, e202307952.
Wang, J.; Cai, C.; Wang, Y. A.; Yang, X. M.; Wu, D. J.; Zhu, Y. M.; Li, M. H.; Gu, M.; Shao, M. H. Electrocatalytic reduction of nitrate to ammonia on low-cost ultrathin CoO x nanosheets. ACS Catal. 2021, 11, 15135–15140.
Yuan, L. P.; Wu, Z. Y.; Jiang, W. J.; Tang, T.; Niu, S.; Hu, J. S. Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376–1382.
Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.
Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.
Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.
Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.
Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508.
Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.
Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Selective nitrate-to-ammonia transformation on surface defects of titanium dioxide photocatalysts. ACS Catal. 2017, 7, 3713–3720.
Wang, Y. T.; Yu, Y. F.; Jia, R. R.; Zhang, C.; Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl. Sci. Rev. 2019, 6, 730–738.
Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.
Martínez, J.; Ortiz, A.; Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl. Catal. B: Environ. 2017, 207, 42–59.
Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Appl. Catal. B: Environ. 2018, 236, 546–568.
Xu, H. W.; Xu, H.; Chen, Z. H.; Ran, X. Q.; Fan, J. W.; Luo, W.; Bian, Z. F.; Zhang, W. X.; Yang, J. P. Bimetallic PdCu nanocrystals immobilized by nitrogen-containing ordered mesoporous carbon for electrocatalytic denitrification. ACS Appl. Mater. Interfaces 2019, 11, 3861–3868.
Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.
Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.
Huo, X. C.; Van Hoomissen, D. J.; Liu, J. Y.; Vyas, S.; Strathmann, T. J. Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts. Appl. Catal. B: Environ. 2017, 211, 188–198.
Guo, S. J.; Heck, K.; Kasiraju, S.; Qian, H. F.; Zhao, Z.; Grabow, L. C.; Miller, J. T.; Wong, M. S. Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts. ACS Catal. 2018, 8, 503–515.
Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Dong, S. J. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst. Nano Res. 2021, 14, 2711–2716.
Zhu, T. H.; Chen, Q. S.; Liao, P.; Duan, W. J.; Liang, S.; Yan, Z.; Feng, C. H. Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small 2020, 16, 2004526.
Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.
Wang, X. H.; Wang, Z. M.; Hong, Q. L.; Zhang, Z. N.; Shi, F.; Li, D. S.; Li, S. N.; Chen, Y. Oxygen-vacancy-rich Cu2O hollow nanocubes for nitrate electroreduction reaction to ammonia in a neutral electrolyte. Inorg. Chem. 2022, 61, 15678–15685.
Shen, Z. R.; Yan, J. B.; Wang, M.; Xing, L. D.; Huang, B. J.; Zhou, H. Y.; Li, W. B.; Chen, L. S.; Shi, J. L. Cu/Cu+ synergetic effect in Cu2O/Cu/CF electrocatalysts for efficient nitrate reduction to ammonia. ACS Sustain. Chem. Eng. 2023, 11, 9433–9441.
Jiang, H. F.; Chen, G. F.; Savateev, O.; Xue, J.; Ding, L. X.; Liang, Z. X.; Antonietti, M.; Wang, H. H. Enabled efficient ammonia synthesis and energy supply in a zinc-nitrate battery system by separating nitrate reduction process into two stages. Angew. Chem., Int. Ed. 2023, 62, e202218717.
Wang, C. C.; Ye, F.; Shen, J. H.; Xue, K. H.; Zhu, Y. H.; Li, C. Z. In situ loading of Cu2O active sites on island-like copper for efficient electrochemical reduction of nitrate to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 6680–6688.
Gong, Z. H.; Zhong, W. Y.; He, Z. Y.; Liu, Q. Y.; Chen, H. J.; Zhou, D.; Zhang, N.; Kang, X. W.; Chen, Y. Regulating surface oxygen species on copper(I) oxides via plasma treatment for effective reduction of nitrate to ammonia. Appl. Catal. B: Environ. 2022, 305, 121021.
Geng, J.; Ji, S. H.; Xu, H.; Zhao, C. J.; Zhang, S. B.; Zhang, H. M. Electrochemical reduction of nitrate to ammonia in a fluidized electrocatalysis system with oxygen vacancy-rich CuO x nanoparticles. Inorg. Chem. Front. 2021, 8, 5209–5213.
Amendola, V.; Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution. Phys. Chem. Chem. Phys. 2013, 15, 3027–3046.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Li, H. H.; Wu, Y.; Li, C.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Jiang, Q.; Sun, C. Q.; Xu, S. Q. Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 251, 305–312.
Akhavan, O.; Azimirad, R.; Safa, S.; Hasani, E. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem. 2011, 21, 9634–9640.
Choi, D.; Jang, D. J. Facile fabrication of CuO/Cu2O composites with high catalytic performances. New J. Chem. 2017, 41, 2964–2972.
Zuo, Z. J.; Li, J.; Han, P. D.; Huang, W. XPS and DFT studies on the autoxidation process of Cu sheet at room temperature. J. Phys. Chem. C 2014, 118, 20332–20345.
Zhang, H.; Gu, X. J.; Liu, P. L.; Song, J.; Cheng, J.; Su, H. Q. Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride. J. Mater. Chem. A 2017, 5, 2288–2296.
Wang, R.; Sui, Y.; Yang, F.; Qi, J. Q.; Wei, F. X.; He, Y. Z.; Meng, Q. K.; Sun, Z. Synthesis of Cu2O by oxidation-assisted dealloying method for flexible all-solid-state asymmetric supercapacitors. J. Mater. Sci.: Mater. Electron. 2018, 29, 2080–2090.
Pan, Y. L.; Xu, X. M.; Zhong, Y. J.; Ge, L.; Chen, Y. B.; Veder, J. P. M.; Guan, D. Q.; O’Hayre, R.; Li, M. R.; Wang, G. X. et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002.
Reyter, D.; Bélanger, D.; Roué, L. Study of the electroreduction of nitrate on copper in alkaline solution. Electrochim. Acta 2008, 53, 5977–5984.
Pérez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 2017, 227, 77–84.
Fu, X. B.; Zhao, X. G.; Hu, X. B.; He, K.; Yu, Y. N.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M. R. et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl. Mater. Today 2020, 19, 100620.
Han, S. H.; Li, H. J.; Li, T. L.; Chen, F. P.; Yang, R.; Yu, Y. F.; Zhang, B. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 2023, 6, 402–414.
Wen, W. D.; Yan, P.; Sun, W. P.; Zhou, Y. T.; Yu, X. Y. Metastable phase Cu with optimized local electronic state for efficient electrocatalytic production of ammonia from nitrate. Adv. Funct. Mater. 2023, 33, 2212236.
Gong, Z. H.; Xiang, X. P.; Zhong, W. Y.; Jia, C. H.; Chen, P. Y.; Zhang, N.; Zhao, S. J.; Liu, W. Z.; Chen, Y.; Lin, Z. Modulating metal–nitrogen coupling in anti-perovskite nitride via cation doping for efficient reduction of nitrate to ammonia. Angew. Chem. 2023, 135, e202308775.