AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Metal organic frameworks-based cathode materials for advanced Li-S batteries: A comprehensive review

Zhengkun Xie1,2,6Boyong Cao2Xiyan Yue3Ruixue Wang1Ziqian Xue5Jiajia Wang3( )Guoqing Guan4Weihua Chen1( )
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
Laboratory of Energy Conversion Engineering, Institute of Regional Innovation, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
Show Author Information

Graphical Abstract

This paper provides a summary accounting for the reaction mechanisms, evaluation parameters, and advanced characterizations of metal organic frameworks (MOFs)-based sulfur host, focusing on the accurate prediction, rational design, and general synthesis of MOFs-based cathode materials for next-generation Li-S batteries (LSBs).

Abstract

Li-S batteries (LSBs) have been considering as new and promising energy storage systems because of the high theoretical energy density and low price. Nevertheless, their practical application is inhibited by several factors, including poor electrical conductivity of electrode materials, greatly volumetric variation, as well as the polysulfide formation upon the cycling. To address these problems, it is imperative to develop and design effective and suitable sulfur host anode materials. Metal organic frameworks (MOFs)-based cathode materials, possessing their good conductivity and easy morphology design, have been extensively studied and exhibited enormously potential in LSBs. In this review, a comprehensive overview of MOFs-based sulfur host materials is provided, including their electrochemical reaction mechanisms, related evaluation parameters, and their performances used in LSBs in the past few years. In particular, the recent advances using in-situ characterization technologies for investigating the electrochemical reaction mechanism in LSBs are presented and highlighted. Additionally, the challenges and prospects associated with future research on MOF-related sulfur host materials are discussed. It is anticipated to offer the guidance for the identification of suitable MOFs-based sulfur cathode materials for high-performance LSBs, thereby contributing for the achievement of a sustainable and renewable society.

References

[1]

Zhou, J. N.; Yang, Q. Y.; Xie, Q. Y.; Ou, H.; Lin, X. M.; Zeb, A.; Hu, L.; Wu, Y. B.; Ma, G. Z. Recent progress in Co-based metal-organic framework derivatives for advanced batteries. J. Mater. Sci. Technol. 2022, 96, 262–284.

[2]

Hu, Y. Y.; Han, R. X.; Mei, L.; Liu, J. L.; Sun, J. C.; Yang, K.; Zhao, J. W. Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based batteries. Mater. Today Energy 2021, 19, 100608.

[3]

Deng, W. J.; Phung, J.; Li, J.; Wang, X. L. Realizing high-performance lithium-sulfur batteries via rational design and engineering strategies. Nano Energy 2021, 82, 105761.

[4]

Shrivastav, V.; Sundriyal, S.; Goel, P.; Kaur, H.; Tuteja, S. K.; Vikrant, K.; Kim, K. H.; Tiwari, U. K.; Deep, A. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2019, 393, 48–78.

[5]

Qi, F. L.; Sun, Z. H.; Fan, X. L.; Wang, Z. X.; Shi, Y.; Hu, G. J.; Li, F. Tunable interaction between metal-organic frameworks and electroactive components in lithium-sulfur batteries: Status and perspectives. Adv. Energy Mater. 2021, 11, 2100387.

[6]

Zhou, C.; Li, Z. H.; Xu, X.; Mai, L. Q. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2021, 8, nwab055.

[7]

Jiang, H. Q.; Liu, X. C.; Wu, Y. S.; Shu, Y. F.; Gong, X.; Ke, F. S.; Deng, H. X. Metal-organic frameworks for high charge–discharge rates in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 130, 3980–3985.

[8]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[9]

Zheng, Y.; Zheng, S. S.; Xue, H. G.; Pang, H. Metal-organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3469–3491.

[10]

Zhong, Y. J.; Xu, X. M.; Liu, Y.; Wang, W.; Shao, Z. P. Recent progress in metal-organic frameworks for lithium-sulfur batteries. Polyhedron 2018, 155, 464–484.

[11]

Salem, H. A.; Babu, G.; Rao, C. V.; Arava, L. M. R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J. Am. Chem. Soc. 2015, 137, 11542–11545.

[12]

Rana, M.; Li, M.; Huang, X.; Luo, B.; Gentle, I.; Knibbe, R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 2019, 7, 6596–6615.

[13]

Rana, M.; Ahad, S. A.; Li, M.; Luo, B.; Wang, L. Z.; Gentle, I.; Knibbe, R. Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater. 2019, 18, 289–310.

[14]

Li, S. Q.; Fan, Z. Y. Encapsulation methods of sulfur particles for lithium-sulfur batteries: A review. Energy Storage Mater. 2021, 34, 107–127.

[15]

Imtiaz, S.; Zhang, J.; Zafar, Z. A.; Ji, S. N.; Huang, T. Z.; Anderson, J. A.; Zhang, Z. L.; Huang, Y. H. Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Sci. China Mater. 2016, 59, 389–407.

[16]

Du, M.; Li, Q.; Zhang, G. X.; Wang, F. F.; Pang, H. Metal-organic framework-based sulfur-loaded materials. Energy Environ. Mater. 2022, 5, 215–230.

[17]

Chu, Z. H.; Gao, X. C.; Wang, C. Y.; Wang, T. Y.; Wang, G. X. Metal-organic frameworks as separators and electrolytes for lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 7301–7316.

[18]

Xie, X. C.; Huang, K. J.; Wu, X. Metal-organic framework derived hollow materials for electrochemical energy storage. J. Mater. Chem. A 2018, 6, 6754–6771.

[19]

Yaghi, O. M.; Li, H. L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402.

[20]

Zhu, W.; Li, A.; Wang, Z. P.; Yang, J. X.; Xu, Y. H. Metal-organic frameworks and their derivatives: Designing principles and advances toward advanced cathode materials for alkali metal ion batteries. Small, 2021, 17, 2006424.

[21]

Wang, W.; Xu, X. M.; Zhou, W.; Shao, Z. P. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 2017, 4, 1600371.

[22]

Wang, Z. Y.; Tao, H. Z.; Yue, Y. Z. Metal-organic-framework-based cathodes for enhancing the electrochemical performances of batteries: A review. ChemElectroChem 2019, 6, 5358–5374.

[23]

Yuan, N.; Sun, W. D.; Yang, J. L.; Gong, X. R.; Liu, R. P. Multifunctional MOF-based separator materials for advanced lithium-sulfur batteries. Adv. Mater. Interfaces 2021, 8, 2001941.

[24]

Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.

[25]
Danuta, H. Electric dry cells and storage batteries. U.S. Patent 3043896, July 10, 1962.
[26]

Demir-Cakan, R.; Morcrette, M.; Nouar, F.; Davoisne, C.; Devic, T.; Gonbeau, D.; Dominko, C.; Serre, R.; Férey, G.; Tarascon, J. M. Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 2011, 133, 16154–16160.

[27]

Xi, K.; Cao, S.; Peng, X. Y.; Ducati, C.; Kumar, R. V.; Cheetham, A. K. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. Chem. Commun. 2013, 49, 2192–2194.

[28]

Wang, Z. Q.; Li, X.; Cui, Y. J.; Yang, Y.; Pan, H. G.; Wang, Z. Y.; Wu, C. D.; Chen, B. L.; Qian, G. D. A metal-organic framework with open metal sites for enhanced confinement of sulfur and lithium-sulfur battery of long cycling life. Cryst. Growth Des. 2013, 13, 5116–5120.

[29]

Zhao, Z. X.; Wang, S.; Liang, R.; Li, Z.; Shi, Z. C.; Chen, G. H. Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries. J. Mater. Chem. A 2014, 2, 13509–13512.

[30]

Zheng, J. M.; Tian, J.; Wu, D. X.; Gu, M.; Xu, W.; Wang, C. M.; Gao, F.; Engelhard, M. H.; Zhang, J. G.; Liu, J. et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 2014, 14, 2345–2352.

[31]

Wang, Z. Q.; Wang, B. X.; Yang, Y.; Cui, Y. J.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Mixed-metal-organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 20999–21004.

[32]

Zhou, J. W.; Yu, X. S.; Fan, X. X.; Wang, X. J.; Li, H. W.; Zhang, Y. W.; Li, W.; Zheng, J.; Wang, B.; Li, X. G. The impact of the particle size of a metal-organic framework for sulfur storage in Li-S batteries. J. Mater. Chem. A 2015, 3, 8272–8275.

[33]

Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

[34]

Li, Z. Q.; Li, C. X.; Ge, X. L.; Ma, J. Y.; Zhang, Z. W.; Li, Q.; Wang, C. X.; Yin, L. W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 2016, 23, 15–26.

[35]

Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710–12715.

[36]

Park, H.; Siegel, D. J. Tuning the adsorption of polysulfides in lithium-sulfur batteries with metal-organic frameworks. Chem. Mater. 2017, 29, 4932–4939.

[37]

Chen, K.; Sun, Z. H.; Fang, R. P.; Shi, Y.; Cheng, H. M.; Li, F. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707592.

[38]

Yang, Y. X.; Wang, Z. H.; Jiang, T. Z.; Dong, C.; Mao, Z.; Lu, C. Y.; Sun, W.; Sun, K. N. A heterogenized Ni-doped zeolitic imidazolate framework to guide efficient trapping and catalytic conversion of polysulfides for greatly improved lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 13593–13598.

[39]

Geng, P. B.; Cao, S.; Guo, X. T.; Ding, J. W.; Zhang, S. T.; Zheng, M. B.; Pang, H. Polypyrrole coated hollow metal-organic framework composites for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 19465–19470.

[40]

Li, Q.; Zhu, H.; Tang, Y. F.; Zhu, P.; Ma, H. Y.; Ge, C. W.; Yan, F. Chemically grafting nanoscale UIO-66 onto polypyrrole nanotubes for long-life lithium-sulfur batteries. Chem. Commun. 2019, 55, 12108–12111.

[41]

Zhang, H.; Zhao, W. Q.; Wu, Y. Z.; Wang, Y. S.; Zou, M. C.; Cao, A. Y. Dense monolithic MOF and carbon nanotube hybrid with enhanced volumetric and areal capacities for lithium-sulfur battery. J. Mater. Chem. A 2019, 7, 9195–9201.

[42]

Liu, H. D.; Chen, Z. L.; Zhou, L.; Li, X.; Pei, K.; Zhang, J.; Song, Y.; Fang, F.; Che, R. C.; Sun, D. L. Rooting bismuth oxide nanosheets into porous carbon nanoboxes as a sulfur immobilizer for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 7074–7081.

[43]

Li, Y. J.; Chen, G. L.; Mou, J. R.; Liu, Y. Z.; Xue, S. F.; Tan, T.; Zhong, W. T.; Deng, Q.; Li, T.; Hu, J. H. et al. Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2020, 28, 196–204.

[44]

Cui, G. L.; Li, G. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Wang, D. R.; Wang, J. Y.; Zhang, Z.; Wang, X.; Chen, Z. W. Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy 2020, 72, 104685.

[45]

Rana, M.; Al-Fayaad, H. A.; Luo, B.; Lin, T. E.; Ran, L. B.; Clegg, J. K.; Gentle, I.; Knibbe, R. Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy 2020, 75, 105009.

[46]

Seo, S. D.; Yu, S.; Park, S.; Kim, D. W. In situ conversion of metal-organic frameworks into VO2-V3S4 heterocatalyst embedded layered porous carbon as an “all-in-one” host for lithium-sulfur batteries. Small 2020, 16, 2004806

[47]

Zong, H.; Hu, L.; Wang, Z. G.; Qi, R. J.; Yu, K.; Zhu, Z. Q. Metal-organic frameworks-derived CoP anchored on MXene toward an efficient bifunctional electrode with enhanced lithium storage. Chem. Eng. J. 2021, 416, 129102.

[48]

Jeon, Y.; Lee, J.; Jo, H.; Hong, H.; Lee, L. Y. S.; Piao, Y. Z. Co/Co3O4-embedded N-doped hollow carbon composite derived from a bimetallic MOF/ZnO core–shell template as a sulfur host for Li-S batteries. Chem. Eng. J. 2021, 407, 126967.

[49]

Meng, R. J.; Du, Q. J.; Zhong, N.; Zhou, X.; Liu, S. H.; Yin, S. F.; Liang, X. A tandem electrocatalysis of sulfur reduction by bimetal 2D MOFs. Adv. Energy Mater. 2021, 11, 2102819.

[50]

Du, M.; Wang, X. Y.; Geng, P. B.; Li, Q.; Gu, Y. J.; An, Y.; Pang, H. Polypyrrole-enveloped prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: High-performance lithium-sulfur batteries. Chem. Eng. J. 2021, 420, 130518.

[51]

Geng, P. B.; Du, M.; Guo, X. T.; Pang, H.; Tian, Z. Q.; Braunstein, P.; Xu, Q. Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium-sulfur batteries. Energy Environ. Mater. 2022, 5, 599–607.

[52]

Yang, D. W.; Liang, Z. F.; Tang, P. Y.; Zhang, C. Q.; Tang, M. X.; Li, Q. Z.; Biendicho, J. J.; Li, J. S.; Heggen, M.; Dunin-Borkowski, R. E. et al. A high conductivity 1d π-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries. Adv. Mater. 2022, 34, 2108835.

[53]

Li, F. Y.; Wu, Y. J.; Lin, Y. X.; Li, J. H.; Sun, Y. J.; Nan, H. X.; Wu, M.; Dong, H. F.; Shi, K. X.; Liu, Q. B. Achieving job-synergistic polysulfides adsorption-conversion within hollow structured MoS2/Co4S3/C heterojunction host for long-life lithium-sulfur batteries. J. Colloid Interface Sci. 2022, 626, 535–543.

[54]

Luo, J. H.; Wang, Y.; Mao, Y. J.; Zhang, Y.; Su, Y.; Zou, B. C.; Chen, S. X.; Deng, Q.; Zeng, Z. L.; Wang, J. et al. Interface engineering of metal phosphide on hollow carbons by dual-template method for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 433, 133549.

[55]

Xu, Z. L.; Kim, J. K.; Kang, K. Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 2018, 19, 84–107.

[56]

Zhang, X. Y.; Chen, K.; Sun, Z. H.; Hu, G. J.; Xiao, R.; Cheng, H. M.; Li, F. Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1076–1095.

[57]

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

[58]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[59]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[60]

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

[61]

Zhang, L. L.; Wang, Y. J.; Niu, Z. Q.; Chen, J. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 2019, 141, 400–416.

[62]

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

[63]

Fan, L. L.; Li, M.; Li, X. F.; Xiao, W.; Chen, Z. W.; Lu, J. Interlayer material selection for lithium-sulfur batteries. Joule 2019, 3, 361–386.

[64]

Yan, M.; Wang, W. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Interfacial design for lithium-sulfur batteries: From liquid to solid. EnergyChem 2019, 1, 100002.

[65]

Zhang, Z. W.; Peng, H. J.; Zhao, M.; Huang, J. Q. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2018, 28, 1707536.

[66]

Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L.; Zheng, N. F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 2019, 15, 1804786.

[67]

Jana, M.; Xu, R.; Cheng, X. B.; Yeon, J. S.; Park, J. M.; Huang, J. Q.; Zhang, Q.; Park, H. S. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1049–1075.

[68]

Pope, M. A.; Aksay, I. A. Structural design of cathodes for Li-S batteries. Adv. Energy Mater. 2015, 5, 1500124.

[69]

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

[70]

McCloskey, B. D. Attainable gravimetric and volumetric energy density of Li-S and Li ion battery cells with solid separator-protected Li metal anodes. J. Phys. Chem. Lett. 2015, 6, 4581–4588.

[71]

Palacín, M. R.; De Guibert, A. Why do batteries fail? Science 2016, 351, 1253292.

[72]

Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604.

[73]

Liu, B.; Fang, R. Y.; Xie, D.; Zhang, W. K.; Huang, H.; Xia, Y.; Wang, X. L.; Xia, X. H.; Tu, J. P. Revisiting scientific issues for industrial applications of lithium-sulfur batteries. Energy Environ. Mater. 2018, 1, 196–208.

[74]

Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tübke, J. Lithium-sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 2015, 5, 1401986.

[75]

Huang, L.; Li, J. J.; Liu, B.; Li, Y. H.; Shen, S. H.; Deng, S. J.; Lu, C. W.; Zhang, W. K.; Xia, Y.; Pan, G. X. et al. Electrode design for lithium-sulfur batteries: Problems and solutions. Adv. Funct. Mater. 2020, 30, 1910375.

[76]

Li, J. J.; Xiao, Z.; Zhou, X. Z.; Zhang, W. K.; Zhang, J.; Gan, Y. P.; Huang, H.; He, X. P.; Wang, G. G.; Xia, Y. The effect of compaction density of sulfur/carbon cathodes on the practical application of Li-S pouch cells. J. Electr. Mater. 2022, 51, 4115–4124.

[77]

Liu, Y. T.; Liu, S.; Li, G. R.; Gao, X. P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 2021, 33, 2003955.

[78]

Shao, Q. J.; Zhu, S. D.; Chen, J. A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Res. 2023, 16, 8097–8138.

[79]

Cha, E.; Patel, M.; Bhoyate, S.; Prasad, V.; Choi, W. Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. Nanoscale Horiz. 2020, 5, 808–831.

[80]

Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

[81]

Nanda, S.; Gupta, A.; Manthiram, A. A lithium-sulfur cell based on reversible lithium deposition from a Li2S cathode host onto a hostless-anode substrate. Adv. Energy Mater. 2018, 8, 1801556.

[82]

Zhang, S. S. Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J. Electrochem. Soc. 2012, 159, A920–A923.

[83]

Zhang, S. S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun. 2006, 8, 1423–1428.

[84]

Sun, J.; Zeng, Q. C.; Lv, R. T.; Lv, W.; Yang, Q. H.; Amal, R.; Wang, D. W. A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode. Energy Storage Mater. 2018, 15, 209–217.

[85]

Xie, Z. K.; Wu, Z. J.; An, X. W.; Yue, X. Y.; Wang, J. J.; Abudula, A.; Guan, G. Q. Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Mater. 2020, 32, 386–401.

[86]

Liang, X.; Kwok, C. Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Sommer, H. et al. Tuning transition metal oxide–sulfur interactions for long life lithium sulfur batteries: The “Goldilocks” principle. Adv. Energy Mater. 2016, 6, 1501636.

[87]

Qiao, R. H.; Zhu, J.; Shen, X. Y.; Cen, G. J.; Hao, J. F.; Ji, H. X.; Tian, M. Y.; Jin, Z.; Zhan, Y. J.; Wu, Y. D. et al. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2023 to May 31, 2023). Energy Storage Sci. Technol. 2023, 12, 2333–2348

[88]

Cen, G. J.; Qiao, R. H.; Shen, X. Y.; Zhu, J.; Hao, J. F.; Sun, Q. F.; Zhang, X. X.; Tian, M. Y.; Jin, Z.; Zhan, Y. J. et al. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2023 to Jul. 31, 2023). Energy Storage Sci. Technol. 2023, 12, 3003–3018

[89]

Zhang, J. Y.; Yan, Y. L.; Wang, X.; Cui, Y. Y.; Zhang, Z. F.; Wang, S.; Xie, Z. K.; Yan, P. F.; Chen, W. H. Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes. Nat. Commun. 2023, 14, 3701.

[90]

Song, K. M.; Wang, X.; Xie, Z. K.; Zhao, Z. W.; Fang, Z.; Zhang, Z. F.; Luo, J.; Yan, P. F.; Peng, Z. Q.; Chen, W. H. Ultrathin CuF2-rich solid–electrolyte interphase induced by cation-tailored double electrical layer toward durable sodium storage. Angew. Chem., Int. Ed. 2023, 62, e202216450.

[91]

Huo, S. D.; Sheng, L.; Xue, W. D.; Wang, L.; Xu, H.; Zhang, H.; Su, B.; Lyu, M. M.; He, X. M. Challenges of stable ion pathways in cathode electrode for all-solid-state lithium batteries: A review. Adv. Energy Mater. 2023, 13, 2204343.

[92]

Xie, Z. K.; Yang, Z. Y.; An, X. W.; Yue, X. Y.; Wang, J. J.; Zhang, S. S.; Chen, W. H.; Abudula, A.; Guan, G. Q. An organosulfide-based energetic liquid as the catholyte in high-energy density lithium metal batteries for large-scale grid energy storage. Nano Res. 2022, 15, 6138–6147.

[93]

Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

[94]

Sun, Y. H.; Gao, M. D.; Li, H.; Xu, L.; Xue, Q.; Wang, X. R.; Bai, Y.; Wu, C. Application of metal-organic frameworks to the interface of lithium metal batteries. Acta Phys. Chim. Sin. 2021, 37, 2007048.

[95]

Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162.

[96]

Huo, H. B.; Xing, Y. J.; Pecht, M.; Züger, B. J.; Khare, N.; Vezzini, A. Safety requirements for transportation of lithium batteries. Energies 2017, 10, 793.

[97]

Ren, D. S.; Feng, X. N.; Han, X. B.; Lu, L. G.; Ouyang, M. G. Recent progress on evolution of safety performance of lithium-ion battery during aging process. Energy Storage Sci. Technol. 2018, 7, 957–966.

[98]

Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161–175.

[99]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[100]

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

[101]

Berg, E. J.; Villevieille, C.; Streich, D.; Trabesinger, S.; Novák, P. Rechargeable batteries: Grasping for the limits of chemistry. J. Electrochem. Soc. 2015, 162, A2468–A2475.

[102]

Mauler, L.; Duffner, F.; Zeier, W. G.; Leker, J. Battery cost forecasting: A review of methods and results with an outlook to 2050. Energy Environ. Sci. 2021, 14, 4712–4739.

[103]

Yang, X. F.; Li, X.; Adair, K.; Zhang, H. M.; Sun, X. L. Structural design of lithium-sulfur batteries: From fundamental research to practical application. Electrochem. Energy Rev. 2018, 1, 239–293.

[104]

Hong, X. J.; Tan, T. X.; Guo, Y. K.; Tang, X. Y.; Wang, J. Y.; Qin, W.; Cai, Y. P. Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries. Nanoscale 2018, 10, 2774–2780.

[105]

Liu, X. F.; Guo, X. Q.; Wang, R.; Liu, Q. C.; Li, Z. J.; Zang, S. Q.; Mak, T. C. W. Manganese cluster-based MOF as efficient polysulfide-trapping platform for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 2838–2844.

[106]

Sun, M.; Yan, G. J.; Ji, H. F.; Feng, Y.; Zhang, X. J.; Shi, J. J. Rational design of a zwitterionic porous organic framework loaded with Co(II) ions to host sulfur and synergistically boost polysulfide redox kinetics for lithium sulfur batteries. Mater. Adv. 2022, 3, 1594–1601.

[107]

Wang, T.; Liu, Y. Y.; Liu, X.; Cui, G. L.; Zhang, Y. G.; Wang, X. Three-dimensionally ordered macro-porous metal-organic framework for high-performance lithium-sulfur battery. ChemElectroChem 2022, 9, e202101099.

[108]

Ge, X. L.; Li, C. X.; Li, Z. Q.; Yin, L. W. Tannic acid tuned metal-organic framework as a high-efficiency chemical anchor of polysulfide for lithium-sulfur batteries. Electrochim. Acta 2018, 281, 700–709.

[109]

Benitez, A.; Amaro-Gahete, J.; Esquivel, D.; Romero-Salguero, F. J.; Morales, J.; Caballero, Á. MIL-88A metal-organic framework as a stable sulfur-host cathode for long-cycle Li-S batteries. Nanomaterials 2020, 10, 424.

[110]

Wu, Y. S.; Jiang, H. Q.; Ke, F. S.; Deng, H. X. Three-dimensional hierarchical constructs of MOF-on-reduced graphene oxide for lithium-sulfur batteries. Chem.—Asian. J. 2019, 14, 3577–3582.

[111]

Zhang, H.; Zhao, W. Q.; Zou, M. C.; Wang, Y. S.; Chen, Y. J.; Xu, L.; Wu, H. S.; Cao, A. Y. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800013

[112]

Shen, G. H.; Liu, Z. X.; Liu, P.; Duan, J. H.; Younus, H. A.; Deng, H. Q.; Wang, X. W.; Zhang, S. G. Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 1154–1163.

[113]

Wu, Z. L.; Wang, L.; Chen, S. X.; Zhu, X. M.; Deng, Q.; Wang, J.; Zeng, Z. L.; Deng, S. G. Facile and low-temperature strategy to prepare hollow ZIF-8/CNT polyhedrons as high-performance lithium-sulfur cathodes. Chem. Eng. J. 2021, 404, 126579.

[114]

Chen, X. H.; Zhang, M.; Zhu, J.; Wang, J.; Jiao, Z. B.; Li, Y. Boosting electrochemical performance of Li-S batteries by cerium-based MOFs coated with polypyrrole. J. Alloys Compd. 2022, 901, 163649.

[115]

Wu, H. L.; Li, Y.; Ren, J.; Rao, D. W.; Zheng, Q. J.; Zhou, L.; Lin, D. M. CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy 2019, 55, 82–92.

[116]

Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998–2004.

[117]

Zhou, F.; Qiao, Z. S.; Zhang, Y. G.; Xu, W. J.; Zheng, H. F.; Xie, Q. S.; Luo, Q.; Wang, L. S.; Qu, B. H.; Peng, D. L. Bimetallic MOF-derived CNTs-grafted carbon nanocages as sulfur host for high-performance lithium-sulfur batteries. Electrochim. Acta 2020, 349, 136378.

[118]

Capková, D.; Kazda, T.; Čech, O.; Király, N.; Zelenka, T.; Čudek, P.; Sharma, A.; Hornebecq, V.; Fedorková, A. S.; Almáši, M. Influence of metal-organic framework MOF-76(Gd) activation/carbonization on the cycle performance stability in Li-S battery. J. Energy Storage 2022, 51, 104419.

[119]

Wang, C. G.; Song, H. W.; Yu, C. C.; Ullah, Z.; Guan, Z. X.; Chu, R. R.; Zhang, Y. F.; Zhao, L. Y.; Li, Q.; Liu, L. W. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 3421–3430.

[120]

Li, H. P.; Li, C. J.; Liu, N.; Wang, Y.; Zhang, Y. G. Co-TiO2 nanoparticles anchored in porous carbon matrix as an efficient sulfur host for lithium/sulfur batteries. J. Alloys Compd. 2020, 818, 152868.

[121]

Yang, J.; Wang, B.; Jin, F.; Ning, Y.; Luo, H.; Zhang, J.; Wang, F.; Wang, D. L.; Zhou, Y. A MIL-47(V) derived hierarchical lasagna-structured V2O3@C hollow microcuboid as an efficient sulfur host for high-performance lithium-sulfur batteries. Nanoscale 2020, 12, 4552–4561.

[122]

Li, Z. F.; Wu, J. Y.; Chen, P. P.; Zeng, Q. H.; Wen, X.; Wen, W.; Liu, Y.; Chen, A. Q.; Guan, J. Z.; Liu, X. et al. A new metallic composite cathode originated from hyperbranched polymer coated MOF for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 435, 135125.

[123]

Zhang, J. T.; Li, Z.; Chen, Y.; Gao, S. Y.; Lou, X. W. Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 10944–10948.

[124]

Luo, S. Q.; Zheng, C. M.; Sun, W. W.; Wang, Y. Q.; Ke, J. H.; Guo, Q. P.; Liu, S. K.; Hong, X. B.; Li, Y. J.; Xie, W. Multi-functional CoS2-N-C porous carbon composite derived from metal-organic frameworks for high performance lithium-sulfur batteries. Electrochim. Acta 2018, 289, 94–103.

[125]

Seo, S. D.; Park, D.; Park, S.; Kim, D. W. “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1903712.

[126]

Jiang, J.; Wang, H. Y.; Zhao, J. Q.; Li, J. D.; Liu, G. H.; Zhang, Y. G. Rational design of graphene oxide wrapped porous microspheres as high-performance sulfur cathode in lithium-sulfur batteries. J. Alloys Compd. 2022, 899, 163240.

[127]

Fu, Y.; Hu, J.; Wang, Q.; Lin, D. M.; Li, K. K.; Zhou, L. M. Thermally etched porous carbon cloth catalyzed by metal organic frameworks as sulfur hosts for lithium-sulfur batteries. Carbon 2019, 150, 76–84.

[128]

Sun, X. X.; Liu, S. K.; Sun, W. W.; Li, Y. J.; Wang, D. Q.; Guo, Q. P.; Hong, X. B.; Xu, J.; Zheng, C. M. Nano-confined synthesis of multi yolk–shell Co-NC@N-HCSs hybrid as sulfur host for high performance lithium-sulfur batteries. Electrochim. Acta 2021, 398, 139302.

[129]

Gao, X. G.; Huang, Y.; Sun, X. Y.; Batool, S.; Li, T. H. Nanopolyhedron Co-C/Cores triggered carbon nanotube in-situ growth inside carbon aerogel shells for fast and long-lasting lithium-sulfur batteries. J. Power Sources 2022, 520, 230913.

[130]

Xiao, K. K.; Wang, J.; Chen, Z.; Qian, Y. H.; Liu, Z.; Zhang, L. L.; Chen, X. H.; Liu, J. L.; Fan, X. F.; Shen, Z. X. Improving polysulfides adsorption and redox kinetics by the Co4N nanoparticle/N-doped carbon composites for lithium-sulfur batteries. Small 2019, 15, 1901454.

[131]

Xin, S. S.; Li, J.; Cui, H. T.; Liu, Y. Y.; Wei, H. Y.; Zhong, Y. Y.; Wang, M. R. Self-templating synthesis of prismatic-like N-doped carbon tubes embedded with Fe3O4 as a high-efficiency polysulfide-anchoring-conversion mediator for high performance lithium-sulfur batteries. Chem. Eng. J. 2021, 410, 128153.

[132]

Zhang, H. Y.; Xin, S. S.; Li, J.; Cui, H. T.; Liu, Y. Y.; Yang, Y. Z.; Wang, M. R. Synergistic regulation of polysulfides immobilization and conversion by MOF-derived CoP-HNC nanocages for high-performance lithium-sulfur batteries. Nano Energy 2021, 85, 106011.

[133]

Wang, D. H.; Ma, K. K.; Hao, J. M.; Zhang, W. Y.; Wang, C. D.; Xu, C. Z.; Shi, H. F.; Ji, Z.; Yan, X. Q.; Gu, Y. S. Multifunction Co-N x species to manipulate polysulfides conversion kinetics toward highly efficient lithium-sulfur batteries. Nano Energy 2021, 89, 106426.

[134]

Xu, J.; Zhang, W. X.; Chen, Y.; Fan, H. B.; Su, D. W.; Wang, G. X. MOF-derived porous N-Co3O4@N-C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 2797–2807.

[135]

Wang, Z. S.; Shen, J. D.; Liu, J.; Xu, X. J.; Liu, Z. B.; Hu, R. Z.; Yang, L. C.; Feng, Y. Z.; Liu, J.; Shi, Z. C. et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv. Mater. 2019, 31, 1902228.

[136]

Chen, C. H.; Lin, S. H.; Wu, Y. J.; Su, J. T.; Cheng, C. C.; Cheng, P. Y.; Ting, Y. C.; Lu, S. Y. MOF-derived cobalt disulfide/nitrogen-doped carbon composite polyhedrons linked with multi-walled carbon nanotubes as sulfur hosts for lithium-sulfur batteries. Chem. Eng. J. 2022, 431, 133924.

[137]

Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 2021, 13, 203.

[138]

Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

[139]

Chen, D. C.; Mukherjee, S.; Zhang, C.; Li, Y.; Xiao, B. B.; Singh, C. V. Two-dimensional square metal organic framework as promising cathode material for lithium-sulfur battery with high theoretical energy density. J. Colloid Interface Sci. 2022, 613, 435–446.

[140]

Peng, Y.; Xu, J.; Xu, J. M.; Ma, J.; Bai, Y.; Cao, S.; Zhang, S. T.; Pang, H. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid Interface Sci. 2022, 307, 102732.

[141]

Phung, J.; Zhang, X. Z.; Deng, W. J.; Li, G. An overview of MOF-based separators for lithium-sulfur batteries. Sustain. Mater. Technol. 2022, 31, e00374.

[142]

Zhang, X. H.; Dong, P. P.; Song, M. K. Metal-organic frameworks for high-energy lithium batteries with enhanced safety: Recent progress and future perspectives. Batteries Supercaps 2019, 2, 591–626.

[143]

Zhang, Y. Y.; Gao, Z.; Song, N. N.; He, J. J.; Li, X. D. Graphene and its derivatives in lithium-sulfur batteries. Mater. Today Energy 2018, 9, 319–335.

[144]

Zhang, M. Y.; Shan, Y. Y.; Kong, Q. Q.; Pang, H. Applications of metal-organic framework-graphene composite materials in electrochemical energy storage. FlatChem 2022, 32, 100332.

[145]

Baumann, A. E.; Downing, J. R.; Burns, D. A.; Hersam, M. C.; Thoi, V. S. Graphene-metal-organic framework composite sulfur electrodes for Li-S batteries with high volumetric capacity. ACS Appl. Mater. Interfaces 2020, 12, 37173–37181.

[146]

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

[147]

Fang, R. P.; Li, G. X.; Zhao, S. Y.; Yin, L. C.; Du, K.; Hou, P. X.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy 2017, 42, 205–214.

[148]

Zeng, Q. H.; Li, X.; Gong, W.; Guo, S. J.; Ouyang, Y.; Li, D. X.; Xiao, Y. B.; Tan, C.; Xie, L.; Lu, H. B. et al. Copolymerization of sulfur chains with vinyl functionalized metal-organic framework for accelerating redox kinetics in lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2104074.

[149]

Jiang, H. Q.; Liu, X. C.; Wu, Y. S.; Shu, Y. F.; Gong, X.; Ke, F. S.; Deng, H. X. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 3916–3921.

[150]

Wu, L.; Zheng, J.; Wang, L.; Xiong, X. H.; Shao, Y. Y.; Wang, G.; Wang, H. J.; Zhong, S. K.; Wu, M. H. PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 811–815.

[151]

Jiang, Q. C.; Li, J.; Yang, Y. J.; Ren, Y. J.; Dai, L.; Gao, J. Y.; Wang, L.; Ye, J. Y.; He, Z. X. Ultrafine SnO2 in situ modified graphite felt derived from metal-organic framework as a superior electrode for vanadium redox flow battery. Rare Met. 2023, 42, 1214–1226.

[152]

Zeng, Q. H.; Xu, L. L.; Li, G. X.; Zhang, Q.; Guo, S. J.; Lu, H. B.; Xie, L.; Yang, J. H.; Weng, J. Q.; Zheng, C. et al. Integrating sub-nano catalysts into metal-organic framework toward pore-confined polysulfides conversion in lithium-sulfur batteries. Adv. Funct. Mater. 2023, 33, 2304619.

[153]

Xiao, Y. B.; Guo, S. J.; Xiang, Y. C.; Li, D. X.; Zheng, C.; Ouyang, Y.; Cherevan, A.; Gan, L. Y.; Eder, D.; Zhang, Q. et al. Engineering configuration compatibility and electronic structure in axially assembled metal-organic framework nanowires for high-performance lithium sulfur batteries. ACS Energy Lett. 2023, 8, 5107–5115.

[154]

Liu, Y. Z.; Li, G. R.; Fu, J.; Chen, Z. W.; Peng, X. S. Strings of porous carbon polyhedrons as self-standing cathode host for high-energy-density lithium-sulfur batteries. Angew. Chem., Int. Ed. 2017, 56, 6176–6180.

[155]

Sun, Z. X.; Vijay, S.; Heenen, H. H.; Eng, A. Y. S.; Tu, W. G.; Zhao, Y. X.; Koh, S. W.; Gao, P. Q.; Seh, Z. W.; Chan, K. et al. Catalytic polysulfide conversion and physiochemical confinement for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 1904010.

[156]

Zhu, Y. P.; Chen, G.; Xu, X. M.; Yang, G. M.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons. ACS Catal. 2017, 7, 3540–3547.

[157]

Morozan, A.; Jaouen, F. Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 2012, 5, 9269–9290.

[158]

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

[159]

Kong, A. G.; Lin, Q. P.; Mao, C. Y.; Bu, X. H.; Feng, P. Y. Efficient oxygen reduction by nanocomposites of heterometallic carbide and nitrogen-enriched carbon derived from the cobalt-encapsulated indium-MOF. Chem. Commun. 2014, 50, 15619–15622.

[160]

Tang, T. Y.; Hou, Y. L. Chemical confinement and utility of lithium polysulfides in lithium sulfur batteries. Small Methods 2019, 4, 1900001.

[161]

Huang, X.; Qiu, T. F.; Zhang, X. H.; Wang, L.; Luo, B.; Wang, L. Z. Recent advances of hollow-structured sulfur cathodes for lithium-sulfur batteries. Mater. Chem. Front. 2020, 4, 2517–2547.

[162]

Reddy, R. C. K.; Lin, J.; Chen, Y. Y.; Zeng, C. H.; Lin, X. M.; Cai, Y. P.; Su, C. Y. Progress of nanostructured metal oxides derived from metal-organic frameworks as anode materials for lithium-ion batteries. Coordin. Chem. Rev. 2020, 420, 213434.

[163]

Chen, S. R.; Xue, M.; Li, Y. Q.; Pan, Y.; Zhu, L. K.; Qiu, S. L. Rational design and synthesis of NixCo3− x O4 nanoparticles derived from multivariate MOF-74 for supercapacitors. J. Mater. Chem. A 2015, 3, 20145–20152.

[164]

Wang, H.; Zhang, X. M.; Yao, R. X.; Zhao, S.; Zhao, P. F.; Yang, R. L.; Wang, L.; Huang, Y. C.; Wei, T.; Li, X.; Fan, Z. J.; Wang, B. In situ rapid versatile method for the preparation of zirconium metal-organic framework filters. Sci. China Chem. 2022, 65, 2462–2467

[165]

Chen, Y.; Wang, T. Y.; Tian, H. J.; Su, D. W.; Zhang, Q.; Wang, G. X. Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666.

[166]

Wang, Z. F.; Liu, Y. S.; Gao, C. W.; Jiang, H.; Zhang, J. M. A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. J. Mater. Chem. A 2015, 3, 20658–20663.

[167]

Shi, Z. Y.; Ge, Y. Y.; Yun, Q. B.; Zhang, H. Two-dimensional nanomaterial-templated composites. Acc. Chem. Res. 2022, 55, 3581–3593.

[168]

Liang, X.; Nazar, L. F. In situ reactive assembly of scalable core–shell sulfur-MnO2 composite cathodes. ACS Nano 2016, 10, 4192–4198

[169]

Wang, J. J.; Yue, X. Y.; Cao, X.; Liu, Z.; Patil, A. M.; Wang, J. W.; Hao, X. G.; Abudula, A.; Guan, G. Q. Metal organic frameworks derived CoS2/NiS2 heterostructure toward high-performance sodium storage anode materials. Chem. Eng. J. 2022, 431, 134091.

[170]

Wang, S.; Zhou, G. L.; Lv, J. G.; Ma, Y. X.; Wang, Y.; Hu, C. J.; Zhang, J. J.; Yang, J.; He, G.; Zhang, M. et al. Co9S8/CoS@S, N co-doped porous carbon derived from MOFs as an efficient catalyst for the oxygen evolution reaction. J. Phys. Chem. Solids 2021, 148, 109696.

[171]

Xu, H. K.; Wei, X. F.; Zeng, H.; Jiang, C. H.; Wang, Z. F.; Ouyang, Y. G.; Lu, C. Y.; Jing, Y.; Yao, S. W.; Dai, F. N. Recent progress of two-dimensional metal-organic-frameworks: From synthesis to electrocatalytic oxygen evolution. Nano Res. 2023, 16, 8614–8637.

[172]

Ogawa, S.; Teranishi, T. Electrical resistivity of narrow-band ferromagnetic Fe1− x Co x S2. Phys. Lett. A 1972, 42, 147–148.

[173]

Zhang, K. X.; Zhang, Z. T.; Shen, H. M.; Tang, Y. Q.; Liang, Z. B.; Zou, R. Q. Electronic modulation of Ni2P through anion and cation substitution toward highly efficient oxygen evolution. Sci. China Mater. 2022, 65, 1522–1530.

[174]

Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.

[175]

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

[176]

Xue, L. X.; Li, Y. Y.; Hu, A. J.; Zhou, M. J.; Chen, W.; Lei, T. Y.; Yan, Y. C.; Huang, J. W.; Yang, C. T.; Wang, X. F. et al. In situ/ operando Raman techniques in lithium-sulfur batteries. Small Struct. 2022, 3, 2100170

[177]

Zhang, L.; Qian, T.; Zhu, X. Y.; Hu, Z. L.; Wang, M. F.; Zhang, L. Y.; Jiang, T.; Tian, J. H.; Yan, C. L. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries. Chem. Soc .Rev. 2019, 48, 5432–5453.

[178]

Patel, M. U. M.; Demir-Cakan, R.; Morcrette, M.; Tarascon, J. M.; Gaberscek, M.; Dominko, R. Li-S battery analyzed by UV/Vis in operando mode. ChemSusChem 2013, 6, 1177–1181.

[179]

Xu, N.; Qian, T.; Liu, X. J.; Liu, J.; Chen, Y.; Yan, C. L. Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano Lett. 2017, 17, 538–543.

[180]

Saqib, N.; Ohlhausen, G. M.; Porter, J. M. In operando infrared spectroscopy of lithium polysulfides using a novel spectro-electrochemical cell. J. Power Sources 2017, 364, 266–271

[181]

Rafie, A.; Pereira, R.; Shamsabadi, A. A.; Kalra, V. In operando FTIR study on the effect of sulfur chain length in sulfur copolymer-based Li-S batteries. J. Phys. Chem. C 2022, 126, 12327–12338.

[182]

Chen, W.; Lei, T. Y.; Qian, T.; Lv, W. Q.; He, W. D.; Wu, C. Y.; Liu, X. J.; Liu, J.; Chen, B.; Yan, C. L. et al. A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium-sulfur battery. Adv. Energy Mater. 2018, 8, 1702889.

[183]

Chen, J. J.; Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M. S.; Ren, B.; Dong, Q. F. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048–2055.

[184]

Ling, M.; Zhang, L.; Zheng, T. Y.; Feng, J.; Guo, J. H.; Mai, L. Q.; Liu, G. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy 2017, 38, 82–90.

[185]

Zhang, L.; Sun, D.; Feng, J.; Cairns, E. J.; Guo, J. H. Revealing the electrochemical charging mechanism of nanosized Li2S by in situ and operando X-ray absorption spectroscopy. Nano Lett. 2017, 17, 5084–5091.

[186]

Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2017, 2, 17069.

[187]

Zheng, J. Y.; Liu, X. X.; Li, W. B.; Li, W. J.; Feng, X. M.; Chen, W. H. Green synthesis of novel conjugated poly(perylene diimide) as cathode with stable sodium storage. Nano Res. 2023, 16, 9538–9545.

[188]

Xu, D., Liang, B. Q., Xu, Y. D.; Liu, M. Recent advances in tip-enhanced Raman spectroscopy probe designs. Nano Res. 2023, 16, 5555–5571.

[189]

Cao, D. X.; Sun, X.; Li, F.; Bak, S. M.; Ji, T. T.; Geiwitz, M.; Burch, K. S.; Du, Y. H.; Yang, G. C.; Zhu, H. L. Understanding electrochemical reaction mechanisms of sulfur in all-solid-state batteries through operando and theoretical studies. Angew. Chem. Int. Ed. 2023, 62, e202302363.

[190]

Lang, S. Y.; Feng, X. R.; Seok, J.; Yang, Y.; Krumov, M. R.; Villarino, A. M.; Lowe, M. A.; Yu, S. H.; Abruña, H. D. Lithium-sulfur redox: Challenges and opportunities. Curr. Opin. Electroche. 2021, 25, 100652.

[191]

Chen, X.; Hou, T. Z.; Persson, K. A.; Zhang, Q. Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives. Mater. Today 2019, 22, 142–158.

[192]

Sheng, B. B.; Chu, Y. H.; Cao, D. F.; Xia, Y. J.; Liu, C. J.; Chen, S. M.; Song, L. Application of X-ray absorption spectroscopy in carbon-supported electrocatalysts. Nano Res. 2023, 16, 12438–12452.

[193]

Wilson, B. E.; Smyrl, W. H.; Stein, A. Design of a low-cost electrochemical cell for in situ XRD analysis of electrode materials. J. Electrochem. Soc. 2014, 161, A700–A703.

[194]

Bleith, P.; Kaiser, H.; Novák, P.; Villevieille, C. In situ X-ray diffraction characterisation of Fe0.5TiOPO4 and Cu0.5TiOPO4 as electrode material for sodium-ion batteries. Electrochim. Acta 2015, 176, 18–21

[195]

Tan, J.; Matz, J.; Dong, P.; Ye, M. X.; Shen, J. F. Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering. Energy Storage Mater. 2021, 42, 645–678.

[196]

Zhao, R.; Wu, Y. X.; Liang, Z. B.; Gao, L.; Xia, W.; Zhao, Y. S.; Zou, R. Q. Metal-organic frameworks for solid-state electrolytes. Energy Environ. Sci. 2020, 13, 2386–2403.

[197]

Li, S. W.; Fu, X. T.; Zhou, J. W.; Han, Y. Z.; Qi, P. F.; Gao, X.; Feng, X.; Wang, B. An effective approach to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode by an MOF-derived coating. J. Mater. Chem. A 2016, 4, 5823–5827.

[198]

Ma, D.; Huang, X.; Zhang, Y.; Wang, L.; Wang, B. Metal-organic frameworks: Synthetic methods for industrial production. Nano Res. 2023, 16, 7906–7925.

[199]

Huang, N. Y.; Chen, Z. Y.; Hu, F. L.; Shang, C. Y.; Wang, W. J.; Huang, J. R.; Zhou, C.; Li, L.; Xu, Q. Large-scale synthesis of low-cost 2D metal-organic frameworks for highly selective photocatalytic CO2 reduction. Nano Res. 2023, 16, 7756–7760.

[200]
Xu, H. Y.; Geng, P. B.; Feng, W. C.; Du, M.; Kang, D. J.; Pang, H. Recent advances in metal-organic frameworks for electrochemical performance of batteries. Nano Res., in press, https://doi/org/10.1007/s12274-023-6251-4.
[201]

Czaja, A. U.; Trukhan, N.; Müller, U. Industrial applications of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1284–1293.

[202]

Hai, G. T.; Xue, X. D.; Feng, S. H.; Ma, Y. W.; Huang, X. B. High-throughput computational screening of metal-organic frameworks as high-performance electrocatalysts for CO2RR. ACS Catal. 2022, 12, 15271–15281.

[203]

Feng, S.; Fu, Z. H.; Chen, X.; Zhang, Q. A review on theoretical models for lithium-sulfur battery cathodes. InfoMat 2022, 4, e12304.

[204]

Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Research progress of high-throughput computational screening of metal-organic frameworks. Acta Chim. Sin. 2019, 77, 323–339.

[205]

Xu, D. G.; Zhang, Q.; Huo, X. Y.; Wang, Y. T.; Yang, M. L. Advances in data-assisted high-throughput computations for material design. MGE Adv. 2023, 1, e11.

[206]

Li, W.; Liang, T. G.; Lin, Y. C.; Wu, W. X.; Li, S. Machine learning accelerated high-throughput computational screening of metal-organic frameworks. Prog. Chem. 2022, 34, 2619–2637.

Nano Research
Pages 2592-2618
Cite this article:
Xie Z, Cao B, Yue X, et al. Metal organic frameworks-based cathode materials for advanced Li-S batteries: A comprehensive review. Nano Research, 2024, 17(4): 2592-2618. https://doi.org/10.1007/s12274-024-6481-0
Topics:

946

Views

8

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 11 December 2023
Revised: 09 January 2024
Accepted: 09 January 2024
Published: 08 February 2024
© Tsinghua University Press 2024
Return