AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Covalent triazine frameworks modified by ultrafine Pt nanoparticles for efficient photocatalytic hydrogen production

Xu Han1,§Xueying Ge3,§Wen-Wen He1( )Wangwang Shen1Tao Zhou1Jian-Sen Wang2Rong-Lin Zhong2( )Abdullah M. Al-Enizi4Ayman Nafady4Shengqian Ma3( )
School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
Department of Chemistry, University of North Texas, 1508 W. Mulberry St. Denton, TX 76201, USA
Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

§ Xu Han and Xueying Ge contributed equally to this work.

Show Author Information

Graphical Abstract

In this study, we have fabricated a PtNPs@CTF-1 (NPs = nanoparticles and CFT = covalent triazine-based framework) photocatalyst with a significantly high rate of hydrogen evolution (20.0 mmol·g−1·h−1, apparent quantum efficiency (AQE) = 7.6%, at λ = 450 nm) with 0.40 wt.% Pt loading, giving rise to a 44-fold-increase in the efficiency of the photocatalytic hydrogen production compared to the unmodified CTF-1.

Abstract

Pt nanoparticles (PtNPs) as active species have always been considered as one of the best semiconductor materials for photocatalytic hydrogen production. In this study, a Schottky heterojunction has been successfully constructed by evenly loading ultrafine PtNPs onto a triazine-based covalent organic frameworks (COFs). This strategy maintained the high activity of these ultra-small PtNPs while maximizing the utilization of the Pt active sites. The fabricated PtNPs@covalent triazine-based framework-1 (CTF-1) composite accomplished a significantly high rate of hydrogen evolution (20.0 mmol·g−1·h−1, apparent quantum efficiency (AQE) = 7.6%, at λ = 450 nm) with 0.40 wt.% Pt loading, giving rise to a 44-fold-increase in the efficiency of the photocatalytic hydrogen production compared to the pristine CTF-1. Theoretical calculations revealed that the strong electron transfer (Q(Pt) = −0.726 qe, in the analysis of Bader charge, Q(Pt) is the charge quantity transferred from Pt cluster to CTF-1, and qe is the unit of charge transfer quantity) between PtNPs and CTF-1 triggers a strong interaction, which makes PtNPs being firmly attached to the structure of CTF-1, thereby enabling high stability and excellent hydrogen production efficiency. Importantly, the hydrogen binding free energy (ΔGH*) of PtNPs@CTF-1 is much lower than that of the unmodified CTF-1, leading to a much lower intermediate state and hence a significant improvement in photocatalytic performance. The overall findings of this work provide a new platform to incorporate metallic NPs into COFs for the design and fabrication of highly efficient photocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2024_6483_MOESM1_ESM.pdf (801.4 KB)

References

[1]

Li, W.; Elzatahry, A.; Aldhayan, D.; Zhao, D. Y. Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Rev. 2018, 47, 8203–8237.

[2]

Kumar, A.; Krishnan, V. Vacancy engineering in semiconductor photocatalysts: Implications in hydrogen evolution and nitrogen fixation applications. Adv. Funct. Mater. 2021, 31, 2009807.

[3]

Yasuda, M.; Matsumoto, T.; Yamashita, T. Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides. Renew. Sustain. Energy Rev. 2018, 81, 1627–1635.

[4]

Yin, L. Y.; Zhao, Y. N.; Xing, Y. M.; Tan, H. Q.; Lang, Z. L.; Ho, W.; Wang, Y. H.; Li, Y. G. Structure–property relationship in β-keto-enamine-based covalent organic frameworks for highly efficient photocatalytic hydrogen production. Chem. Eng. J. 2021, 419, 129984.

[5]

Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.

[6]

Li, Z.; Zi, J. Z.; Luan, X.; Zhong, Y. Q.; Qu, M. H.; Wang, Y. Z.; Lian, Z. C. Localized surface plasmon resonance promotes metal-organic framework-based photocatalytic hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2303069.

[7]

Dao, D. Q.; Anh Nguyen, T. K.; Kang, S. G.; Shin, E. W. Engineering oxidation states of a platinum cocatalyst over chemically oxidized graphitic carbon nitride photocatalysts for photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 2021, 9, 14537–14549.

[8]

Sun, L. L.; Han, L.; Huang, J. T.; Luo, X. D.; Li, X. B. Single-atom catalysts for photocatalytic hydrogen evolution: A review. Int. J. Hydrogen Energy 2022, 47, 17583–17599.

[9]

Aggarwal, P.; Sarkar, D.; Awasthi, K.; Menezes, P. W. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coord. Chem. Rev. 2022, 452, 214289.

[10]

Mohammadnezhad, F.; Kampouri, S.; Wolff, S. K.; Xu, Y. K.; Feyzi, M.; Lee, J. H.; Ji, X. L.; Stylianou, K. C. Tuning the optoelectronic properties of hybrid functionalized MIL-125-NH2 for photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2021, 13, 5044–5051.

[11]

Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Dong, H.; Shen, F. C.; Liu, J.; Lan, Y. Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem., Int. Ed. 2018, 57, 12106–12110.

[12]

Li, C. Z.; Liu, J. L.; Li, H.; Wu, K. F.; Wang, J. H.; Yang, Q. H. Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 2357.

[13]

Wei, S. C.; Zhang, F.; Zhang, W. B.; Qiang, P. R.; Yu, K. J.; Fu, X. B.; Wu, D. Q.; Bi, S.; Zhang, F. Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages. J. Am. Chem. Soc. 2019, 141, 14272–14279.

[14]

Moon, H. S.; Hsiao, K. C.; Wu, M. C.; Yun, Y. J.; Hsu, Y. J.; Yong, K. Spatial separation of cocatalysts on Z-scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic H2 evolution and in-depth analysis of the charge-transfer mechanism. Adv. Mater. 2023, 35, 2200172.

[15]

Xu, M. L.; Li, D. D.; Sun, K.; Jiao, L.; Xie, C. F.; Ding, C. M.; Jiang, H. L. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 16372–16376.

[16]

Nguyen, H. L. Metal-organic frameworks can photocatalytically split water-why not. Adv. Mater. 2022, 34, 2200465.

[17]

Mi, Z.; Zhou, T.; Weng, W. J.; Unruangsri, J.; Hu, K.; Yang, W. L.; Wang, C. C.; Zhang, K. A. I.; Guo, J. Covalent organic frameworks enabling site isolation of viologen-derived electron-transfer mediators for stable photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 9642–9649.

[18]

Liu, S. Z.; Guo, Z.; Qian, X. H.; Zhang, J. Y.; Liu, J. X.; Lin, J. Sonochemical deposition of ultrafine metallic Pt nanoparticles on CdS for efficient photocatalytic hydrogen evolution. Sustain. Energy Fuels 2019, 3, 1048–1054.

[19]

Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y. et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

[20]

Wang, T. N.; Azhar, I.; Yang, Y. T.; Lu, Y.; Tian, Y. Y.; Gao, N.; Cui, F. C.; Yang, L.; Jing, X. F.; Zhu, G. S. Fine-tuned mesoporous covalent organic frameworks for highly efficient low molecular-weight proteins separation. Nano Res. 2022, 15, 4569–4574.

[21]

Liu, Y. N.; Jiang, L. C.; Tian, Y. Y.; Xu, Z. F.; Wang, W. T.; Qiu, M.; Wang, H. M.; Li, X.; Zhu, G. S.; Wang, Y. G. Covalent organic framework/g-C3N4 van der Waals heterojunction toward H2 production. Inorg. Chem. 2023, 62, 3271–3277.

[22]

Hu, Y. D.; Qu, Y. T.; Zhou, Y. S.; Wang, Z. Y.; Wang, H. J.; Yang, B.; Yu, Z. Q.; Wu, Y. E. Single Pt atom-anchored C3N4: A bridging Pt–N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chem. Eng. J. 2021, 412, 128749.

[23]

Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem., Int. Ed. 2008, 47, 3450–3453.

[24]

Hasija, V.; Patial, S.; Raizada, P.; Aslam Parwaz Khan, A.; Asiri, A. M.; Van Le, Q.; Nguyen, V. H.; Singh, P. Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coord. Chem. Rev. 2022, 452, 214298.

[25]

Lan, Z. A.; Wu, M.; Fang, Z. P.; Zhang, Y. F.; Chen, X.; Zhang, G. G.; Wang, X. C. Ionothermal synthesis of covalent triazine frameworks in a NaCl-KCl-ZnCl2 eutectic salt for the hydrogen evolution reaction. Angew. Chem. 2022, 134, e202201482.

[26]

Kuecken, S.; Acharjya, A.; Zhi, L. J.; Schwarze, M.; Schomäcker, R.; Thomas, A. Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 5854–5857.

[27]

Wang, K. W.; Yang, L. M.; Wang, X.; Guo, L. P.; Cheng, G.; Zhang, C.; Jin, S. B.; Tan, B. E.; Cooper, A. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew. Chem., Int. Ed. 2017, 56, 14149–14153.

[28]

Zhang, S. Q.; Cheng, G.; Guo, L. P.; Wang, N.; Tan, B. E.; Jin, S. B. Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting. Angew. Chem., Int. Ed. 2020, 59, 6007–6014.

[29]

Zheng, L. L.; Wang, D. K.; Wu, S. L.; Jiang, X. H.; Zhang, J.; Xing, Q. J.; Zou, J. P.; Luo, S. L. Unveiling localized Pt–P–N bonding states constructed on covalent triazine-based frameworks for boosting photocatalytic hydrogen evolution. J. Mater. Chem. A 2020, 8, 25425–25430.

[30]

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

[31]

Liu, W.; Wang, H. L. Influence of surface capping on oxygen reduction catalysis: A case study of 1.7 nm Pt nanoparticles. Surf. Sci. 2016, 648, 120–125.

[32]

Li, S. Y.; Li, W. H.; Wu, X. L.; Tian, Y. Y.; Yue, J. Y.; Zhu, G. S. Pore-size dominated electrochemical properties of covalent triazine frameworks as anode materials for K-ion batteries. Chem. Sci. 2019, 10, 7695–7701.

[33]

Kong, D.; Han, X. Y.; Xie, J. J.; Ruan, Q. S.; Windle, C. D.; Gadipelli, S.; Shen, K.; Bai, Z. M.; Guo, Z. X.; Tang, J. W. Tunable covalent triazine-based frameworks (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting. ACS Catal. 2019, 9, 7697–7707.

[34]

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

[35]

Xu, N. Z.; Liu, Y. B.; Yang, W. J.; Tang, J.; Cai, B. W.; Li, Q.; Sun, J. W.; Wang, K. Q.; Xu, B. L.; Zhang, Q. T. et al. 2D–2D heterojunctions of a covalent triazine framework with a triphenylphosphine-based covalent organic framework for efficient photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2020, 3, 11939–11946

[36]

Huang, H. M.; Xu, B.; Tan, Z. K.; Jiang, Q. Q.; Fang, S. Q.; Li, L. Y.; Bi, J. H.; Wu, L. A facile in situ growth of CdS quantum dots on covalent triazine-based frameworks for photocatalytic H2 production. J. Alloys Compd. 2020, 833, 155057.

[37]

Ma, X. H.; Liu, Y. N.; Wang, Y. P.; Jin, Z. L. Co3O4/CeO2 p–n heterojunction construction and application for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 33809–33822.

[38]

Xie, J. J.; Shevlin, S. A.; Ruan, Q. S.; Moniz, S. J. A.; Liu, Y. R.; Liu, X.; Li, Y. M.; Lau, C. C.; Guo, Z. X.; Tang, J. W. Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy Environ. Sci. 2018, 11, 1617–1624.

[39]

Zhen, W. L.; Gao, H. B.; Tian, B.; Ma, J. T.; Lu, G. X. Fabrication of low adsorption energy Ni-Mo cluster cocatalyst in metal-organic frameworks for visible photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 10808–10819.

[40]

Yang, L. Q.; Huang, J. F.; Shi, L.; Cao, L. Y.; Zhou, W.; Chang, K.; Meng, X. G.; Liu, G. G.; Jie, Y. N.; Ye, J. H. Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation. Nano Energy 2017, 36, 331–340.

Nano Research
Pages 4908-4915
Cite this article:
Han X, Ge X, He W-W, et al. Covalent triazine frameworks modified by ultrafine Pt nanoparticles for efficient photocatalytic hydrogen production. Nano Research, 2024, 17(6): 4908-4915. https://doi.org/10.1007/s12274-024-6483-y
Topics:

641

Views

3

Crossref

2

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 26 October 2023
Revised: 21 December 2023
Accepted: 11 January 2024
Published: 07 February 2024
© Tsinghua University Press 2024
Return