AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hydrogen bond-bridged phosphorene flexible film for photodynamic inhibiting Staphylococcus aureus

Ziyu Wei§Wenting Li§Zhifang LiuYongfa Zhu( )Huaqiang Cao( )
Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, Beijing 100084, China

§ Ziyu Wei and Wenting Li contributed equally to this work.

Show Author Information

Graphical Abstract

The injected energy converts oxygen (O2) into singlet oxygen (1O2). Then, 1O2 migrates to the bacterial membrane, where it disintegrates the lipid bilayer causing the formation of pores, leading to bacterial death.

Abstract

Antibiotics are a widely used and effective treatment for bacterial infections. However, bacteria can gradually evolve during infection, leading to developing resistance to antibiotics, which renders previously effective treatments ineffective. Finding a useful and convenient manner to treat bacterial infections is a great challenge. Here, we report a flexible hydrogen-bond-bridged phosphorene film with photodynamic antibacterial properties and excellent mechanical properties, fabricated from electrochemical exfoliation of black phosphorus (BP). When illuminated under 700 nm light, the hydrogen bond-bridged phosphorene flexible film is capable of converting ground-state triplet oxygen (O2) into excited-state singlet oxygen (1O2), destroying the structure of the membrane of Staphylococcus aureus, and eventually leading to bacterial death, via breaking the C=C of unsaturated fatty acids within the bacterial cell membrane after the reaction between 1O2 and unsaturated fatty acids, thus realizing a highly efficient antibacterial approach, which is supported by gas chromatography-mass spectrometry (GC-MS) technique. This work establishes an effective phototherapy platform for treating bacterial traumatic infections.

Electronic Supplementary Material

Download File(s)
12274_2024_6487_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Gardner, M. W.; Kendrick, J. B. Bacterial spot of cowpea. Science 1923, 57, 275.

[2]

Thammavongsa, V.; Missiakas, D. M.; Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 2013, 342, 863–866.

[3]

Alexander, J. A. N.; Worrall, L. J.; Hu, J. H.; Vuckovic, M.; Satishkumar, N.; Poon, R.; Sobhanifar, S.; Rosell, F. I.; Jenkins, J.; Chiang, D. et al. Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus. Nature 2023, 613, 375–382.

[4]

Lázár, V.; Snitser, O.; Barkan, D.; Kishony, R. Antibiotic combinations reduce Staphylococcus aureus clearance. Nature 2022, 610, 540–546.

[5]

Spaan, A. N.; Neehus, A. L.; Laplantine, E.; Staels, F.; Ogishi, M.; Seeleuthner, Y.; Rapaport, F.; Lacey, K. A.; van Nieuwenhove, E.; Chrabieh, M. et al. Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin. Science 2022, 376, eabm6380.

[6]

Shatalin, K.; Nuthanakanti, A.; Kaushik, A.; Shishov, D.; Peselis, A.; Shamovsky, I.; Pani, B.; Lechpammer, M.; Vasilyev, N.; Shatalina, E. et al. Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance. Science 2021, 372, 1169–1175.

[7]

Wozniak, J. M.; Mills, R. H.; Olson, J.; Caldera, J. R.; Sepich-Poore, G. D.; Carrillo-Terrazas, M.; Tsai, C. M.; Vargas, F.; Knight, R.; Dorrestein, P. C. et al. Mortality risk profiling of Staphylococcus aureus bacteremia by multi-omic serum analysis reveals early predictive and pathogenic signatures. Cell 2020, 182, 1311–1327.e14.

[8]

Zhou, W.; Spoto, M.; Hardy, R.; Guan, C. H.; Fleming, E.; Larson, P. J.; Brown, J. S.; Oh, J. Host-specific evolutionary and transmission dynamics shape the functional diversification of Staphylococcus epidermidis in human skin. Cell 2020, 180, 454–470.e18.

[9]

Ogston, A. Micrococcus poisoning. J. Anat. Physiol. 1882, 17, 24–58.

[10]

Skinner, D.; Keefer, C. S. Significance of bacteremia caused by Staphylococcus aureus: A study of one hundred and twenty-two cases and a review of the literature concerned with experimental infection in animals. Arch Intern Med (Chic). 1941, 68, 851–875.

[11]

Massey, R. C.; Horsburgh, M. J.; Lina, G.; Höök, M.; Recker, M. The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission. Nat. Rev. Microbiol. 2006, 4, 953–958.

[12]
Ma, X. J.; Tang, W. J.; Yang, R. Bioinspired nanomaterials for the treatment of bacterial infections. Nano Res., in press, DOI: 10.1007/s12274-023-6283-9.
[13]

Chen, S.; Chu, Z. Y.; Cao, L. M.; Xu, L. L.; Jin, Q. Q.; Liu, N.; Chen, B. J.; Fang, M.; Wang, W. N.; Qian, H. S. et al. Antibacterial mechanism and transcriptomic analysis of a near-infrared triggered upconversion nanoparticles@AgBiS2 for synergetic bacteria-infected therapy. Nano Res. 2022, 15, 9298–9308.

[14]

Lian, C.; Piksa, M.; Yoshida, K.; Persheyev, S.; Pawlik, K. J.; Matczyszyn, K.; Samuel, I. D. W. Flexible organic light-emitting diodes for antimicrobial photodynamic therapy. npj Flex. Electron. 2019, 3, 18.

[15]

Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349–361.

[16]

Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.

[17]

DeRosa, M. C.; Crutchley, R. J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002, 233–234, 351–371

[18]

Al-Nu’airat, J.; Oluwoye, I.; Zeinali, N.; Altarawneh, M.; Dlugogorski, B. Z. Review of chemical reactivity of singlet oxygen with organic fuels and contaminants. Chem. Rec. 2021, 21, 315–342.

[19]

Hynek, J.; Chahal, M. K.; Payne, D. T.; Labuta, J.; Hill, J. P. Porous framework materials for singlet oxygen generation. Coord. Chem. Rev. 2020, 425, 213541.

[20]

Nyga, A.; Blacha-Grzechnik, A.; Podsiadły, P.; Duda, A.; Kepska, K.; Krzywieck, M.; Motyka, R.; Janssen, R. A. J.; Data, P. Singlet oxygen formation from photoexcited P3HT:PCBM films applied in oxidation reactions. Mater. Adv. 2022, 3, 2063–2069.

[21]

Tian, Y. L.; Cao, H. Q.; Yang, H. J.; Yao, W. Q.; Wang, J. O.; Qiao, Z. R.; Cheetham, A. K. Electron spin catalysis with graphene belts. Angew. Chem., Int. Ed. 2023, 62, e202215295.

[22]
Sawyer, D. T.; Williams, R. J. P. Oxygen Chemistry; New York: Oxford University Press, 1991; pp 157.
[23]

Liu, F. W.; Fang, Y. G.; Chen, Y.; Liu, J. B. Dissociative excitation energy transfer in the reactions of protonated cysteine and tryptophan with electronically excited singlet molecular oxygen ( a1Δg). J. Phys. Chem. B 2011, 115, 9898–9909.

[24]

Ogilby, P. R. Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 2010, 31, 3181–3209.

[25]

Schweitzer, C.; Schmidt, R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 2003, 103, 1685–1758.

[26]

Flors, C.; Nonell, S. Light and singlet oxygen in plant defense against pathogens: Phototoxic phenalenone phytoalexins. Acc. Chem. Res. 2006, 39, 293–300.

[27]

Maisch, T.; Baier, J.; Franz, B.; Maier, M.; Landthaler, M.; Szeimies, R. M.; Bäumler, W. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc. Natl. Acad. Sci. USA 2007, 104, 7223–7228.

[28]

Falick, A. M.; Mahan, B. H.; Myers, R. J. Paramagnetic resonance spectrum of the 1 Δg oxygen molecule. J. Chem. Phys. 1965, 42, 1837–1838.

[29]

Fuchs, E. Scratching the surface of skin development. Nature 2007, 445, 834–842.

[30]

D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248.

[31]

Yu, Y.; Zhang, Y. N.; Wang, Y.; Chen, W. X.; Guo, Z. J.; Song, N. N.; Liang, M. M. Multiscale structural design of MnO2@GO superoxide dismutase nanozyme for protection against antioxidant damage. Nano Res. 2023, 16, 10763–10769.

[32]

Ash, C.; Dubec, M.; Donne, K.; Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 2017, 32, 1909–1918.

[33]

Wang, H.; Yang, X. Z.; Shao, W.; Chen, S. C.; Xie, J. F.; Zhang, X. D.; Wang, J.; Xie, Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 2015, 137, 11376–11382.

[34]

Liu, Z. F.; Wang, H. P.; Cao, H. Q.; Xie, D.; Li, C.; Yang, H. J.; Yao, W. Q.; Cheetham, A. K. Ultratough hydrogen-bond-bridged phosphorene films. Adv. Mater. 2022, 34, 2203332.

[35]

Liu, Z. F.; Sun, Y. L.; Cao, H. Q.; Xie, D.; Li, W.; Wang, J. O.; Cheetham, A. K. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat. Commun. 2020, 11, 3917.

[36]

Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887–1892.

[37]

Cao, H. Q.; Wang, C.; Li, B. J.; Chen, T. Y.; Han, P.; Zhang, Y.; Yang, H. J.; Li, Q. Y.; Cheetham, A. K. Successive free-radical C(sp2)-C(sp2) coupling reactions to form graphene. CCS Chem. 2022, 4, 584–597.

[38]

Katsyuba, S. A.; Vener, M. V.; Zvereva, E. E.; Fei, Z. F.; Scopelliti, R.; Laurenczy, G.; Yan, N.; Paunescu, E.; Dyson, P. J. How strong is hydrogen bonding in ionic liquids? Combined X-ray crystallographic, infrared/Raman spectroscopic, and density functional theory study. J. Phys. Chem. B 2013, 117, 9094–9105.

[39]

Gupta, A. R.; Sarpal, S. K.; Majmudar, A. A. Evidence for strengthening of hydrogen bonds in hydrophobic hydration-hydrogen isotope effects in dehydration of tetraalkylammonium forms of dowex -50 W resins. Indian J. Chem. 1990, 29A, 316–320.

[40]

Kim, S. J.; Kim, Y. I.; Lamichhane, B.; Kim, Y. H.; Lee, Y.; Cho, C. R.; Cheon, M.; Kim, J. C.; Jeong, H. Y.; Ha, T. et al. Flat-surface-assisted and self-regulated oxidation resistance of Cu(111). Nature 2022, 603, 434–438.

[41]

Wang, C.; Wu, S.; Yang, X.; Yan, Z. H.; Xie, G. X.; Zhang, S. C.; Wang, J. D.; Cao, H. Q. Thickness-dependent Young's modulus of polycrystalline α-PbO nanosheets. Nanotechnology 2020, 31, 395712.

[42]

Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

[43]

Liu, F. L.; Shi, R.; Wang, Z.; Weng, Y. X.; Che, C. M.; Chen, Y. Direct z-scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 11791–11795.

[44]
Sawyer, D. T.; Williams, R. J. P. Oxygen Chemistry; Oxford University Press: New York, 1991; pp 156.
[45]

Wang, Y.; Lin, Y.; He, S. Y.; Wu, S. H.; Yang, C. P. Singlet oxygen: Properties, generation, detection, and environmental applications. J. Hazard. Mater. 2024, 461, 132538.

[46]

Crompton, M. J.; Dunstan, R. H. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography. J. Chromatogr. B 2018, 1084, 80–88.

[47]

Dahl, T. A.; Midden, W. R.; Hartman, P. E. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. J. Bacteriol. 1989, 171, 2188–2194.

[48]

Bacellar, I. O. L.; Tsubone, T. M.; Pavani, C.; Baptista, M. S. Photodynamic efficiency: From molecular photochemistry to cell death. Int. J. Mol. Sci. 2015, 16, 20523–20559.

[49]

Zamadar, M.; Ghosh, G.; Mahendran, A.; Minnis, M.; Kruft, B. I.; Ghogare, A.; Aebisher, D.; Greer, A. Photosensitizer drug delivery via an optical fiber. J. Am. Chem. Soc. 2011, 133, 7882–7891.

[50]

Zaklika, K. A.; Thayer, A. L.; Schaap, A. P. Substituent effects on the decomposition of 1,2-dioxetanes. J. Am. Chem. Soc. 1978, 100, 4916–4918.

[51]

Frimer, A. A. The reaction of singlet oxygen with olefins: The question of mechanism. Chem. Rev. 1979, 79, 359–387.

Nano Research
Pages 5461-5468
Cite this article:
Wei Z, Li W, Liu Z, et al. Hydrogen bond-bridged phosphorene flexible film for photodynamic inhibiting Staphylococcus aureus. Nano Research, 2024, 17(6): 5461-5468. https://doi.org/10.1007/s12274-024-6487-7
Topics:

699

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 November 2023
Revised: 05 January 2024
Accepted: 14 January 2024
Published: 29 February 2024
© Tsinghua University Press 2024
Return