AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible MXene/sodium alginate composite fabric with high structural stability and oxidation resistance for electromagnetic interference shielding

Hao-Wen Zhang1Lu-Yao Yang1Meng-Lin Huang1Ming-Hua Cheng1Zhe-Sheng Feng1Fanbin Meng2( )Zifeng Lin3( )Yan Wang1( )
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
Show Author Information

Graphical Abstract

This research successfully synthesized a composite material utilizing MXene and polymeric sodium alginate, which could be used in the modification of fabric to endow it with structural stability, antioxidant properties, and efficient electromagnetic shielding performance.

Abstract

Wearable electromagnetic interference (EMI) shielding fabrics with excellent electromagnetic shielding performance, oxidation resistance, and structural stability are highly demanded for the rapid development of electronic devices and wireless communication. MXenes are metallic conductive materials with exceptional EMI shielding properties, but they are prone to oxidation in air and have poor structural stability and durability on fabric substrates. Herein, we present a one-step assembly method to fabricate fabrics coated with MXenes and polymeric sodium alginate (SA) composite (MXene-SA). SA protects MXenes from oxidation and forms a stable interlayer structure by bonding to MXenes. The MXene-SA coated fabrics are breathable and flexible, and have a low sheet resistance of 2.12 ± 0.08 Ω/sq and a high EMI shielding performance of 37.05 dB at X-band, which is comparable to the best 42.31 dB. Moreover, the MXene-SA coated fabrics exhibit high structural stability and oxidation resistance under various conditions of sonication disintegration, mechanical abuse, chemical corrosion, and humidity, compared to pure MXenes coated fabrics. We believe that the wearable and high-performance MXene-SA fabrics have great potential for the next generation of ultra-portable and wearable EMI shielding products.

Electronic Supplementary Material

Download File(s)
12274_2024_6488_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[2]

Wan, Y. J.; Wang, X. Y.; Li, X. M.; Liao, S. Y.; Lin, Z. Q.; Hu, Y. G.; Zhao, T.; Zeng, X. L.; Li, C. H.; Yu, S. H. et al. Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 2020, 14, 14134–14145.

[3]

Liu, L. Y.; Deng, H.; Tang, X. P.; Lu, Y. X.; Zhou, J. Y.; Wang, X. F.; Zhao, Y. Y.; Huang, B.; Shi, Y. G. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc. Natl. Acad. Sci. USA 2021, 118, e2105838118.

[4]

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

[5]

Yang, Y. F.; Han, M. R.; Liu, W.; Wu, N.; Liu, J. R. Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res. 2022, 15, 9614–9630.

[6]

Shen, X.; Kim, J. K. Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 2023, 16, 1387–1413.

[7]

Nan, Z.; Wei, W.; Lin, Z. H.; Chang, J. J.; Hao, Y. Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 2023, 15, 172.

[8]

Vidal, J. V.; Slabov, V.; Kholkin, A. L.; dos Santos, M. P. S. Hybrid triboelectric–electromagnetic nanogenerators for mechanical energy harvesting: A review. Nano-Micro Lett. 2021, 13, 199.

[9]

Yao, B.; Hong, W.; Chen, T. W.; Han, Z. B.; Xu, X. W.; Hu, R. C.; Hao, J. Y.; Li, C. H.; Li, H.; Perini, S. E. et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 2020, 32, 1907499.

[10]

Chang, C. G.; Yang, J. C.; Zhang, G.; Long, S. R.; Wang, X. J.; Yang, J. Fabrication of segregated poly(arylene sulfide sulfone)/graphene nanoplate composites reinforced by polymer fibers for electromagnetic interference shielding. Nano Mater. Sci. 2022, 4, 285–293.

[11]

Law, M. K.; Zhao, Y.; Zhang, W. B.; Wang, R.; Shi, M. C.; Zhang, Y. X.; Chen, S. S.; Yang, J. L. Highly transparent and super-wettable nanocoatings hybridized with isocyanate-silane modified surfactant for multifunctional applications. Nano Mater. Sci. 2022, 4, 151–168.

[12]

Zhang, H. W.; Huang, M. L.; Luo, J. Q.; Xu, Z. Q.; Chen, Y. M.; Feng, Z. S.; Wang, Y. Metallization of polyamide-imide for high-frequency communication by polyethylenimine modification and electroless copper plating. ACS Appl. Polym. Mater. 2023, 5, 10032–10041.

[13]

Wang, Q. W.; Zhang, H. B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L. X.; Yang, R.; Koratkar, N.; Yu, Z. Z. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 2019, 29, 1806819.

[14]

Lee, J. H.; Kim, Y. S.; Ru, H. J.; Lee, S. Y.; Park, S. J. Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 188.

[15]

Zhang, S.; Liu, X. H.; Jia, C. Y.; Sun, Z. S.; Jiang, H. W.; Jia, Z. R.; Wu, G. L. Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 2023, 15, 204.

[16]

Hu, X. L.; Tian, M. W.; Xu, T. L.; Sun, X. T.; Sun, B.; Sun, C. C.; Liu, X. Q.; Zhang, X. J.; Qu, L. J. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 2020, 14, 559–567.

[17]

Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 2022, 14, 224.

[18]

Sun, F. Q.; Tian, M. W.; Sun, X. T.; Xu, T. L.; Liu, X. Q.; Zhu, S. F.; Zhang, X. J.; Qu, L. J. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Lett. 2019, 19, 6592–6599.

[19]

Li, X.; Sun, X. H.; Zhang, J. Y.; Xue, S.; Zhi, L. J. A stretchable fabric as strain sensor integrating electromagnetic shielding and electrochemical energy storage. Nano Res. 2023, 16, 12753–12761.

[20]

Sun, Z. P.; Shen, B.; Li, Y.; Chen, J. L.; Zheng, W. G. High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Res. 2022, 15, 6851–6859.

[21]

Xiong, C. Y.; Wang, T. X.; Zhang, Y. K.; Zhu, M.; Ni, Y. H. Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res. 2022, 15, 7506–7532.

[22]

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

[23]

Song, L. M.; Zhang, F.; Chen, Y. Q.; Guan, L.; Zhu, Y. Q.; Chen, M.; Wang, H. L.; Putra, B. R.; Zhang, R.; Fan, B. B. Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 152.

[24]

Pan, F.; Rao, Y. P.; Batalu, D.; Cai, L.; Dong, Y. Y.; Zhu, X. J.; Shi, Y. Y.; Shi, Z.; Liu, Y. W.; Lu, W. Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 2022, 14, 140.

[25]

Tang, T. T.; Wang, S. C.; Jiang, Y.; Xu, Z. G.; Chen, Y.; Peng, T. S.; Khan, F.; Feng, J. B.; Song, P. G.; Zhao, Y. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 66–75.

[26]

Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

[27]

Qi, Z. L.; Zhang, T. W.; Zhang, X. D.; Xu, Q.; Cao, K.; Chen, R. MXene-based flexible pressure sensor with piezoresistive properties significantly enhanced by atomic layer infiltration. Nano Mater. Sci. 2023, 5, 439–446.

[28]

Wang, H.; Cui, Z.; He, S. A.; Zhu, J. Q.; Luo, W.; Liu, Q.; Zou, R. J. Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium-sulfur batteries. Nano-Micro Lett. 2022, 14, 189.

[29]

Gu, J. A.; Zhu, Q.; Shi, Y. Z.; Chen, H.; Zhang, D.; Du, Z. G.; Yang, S. B. Single zinc atoms immobilized on MXene (Ti3C2Cl x ) layers toward dendrite-free lithium metal anodes. ACS Nano 2020, 14, 891–898.

[30]

Li, J. X.; Liang, G. M.; Zheng, W.; Zhang, S. L.; Davey, K.; Pang, W. K.; Guo, Z. P. Addressing cation mixing in layered structured cathodes for lithium-ion batteries: A critical review. Nano Mater. Sci. 2023, 5, 404–420.

[31]

Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78–81.

[32]

Yang, X.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. 3D porous oxidation-resistant MXene/graphene architectures induced by in situ zinc template toward high-performance supercapacitors. Adv. Funct. Mater. 2021, 31, 2101087.

[33]

Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133.

[34]

Liu, W.; Zhang, H. W.; Luo, J. Q.; Xu, Z. Q.; Chen, Y. M.; Kang, F. F.; Feng, Z. S.; Wang, X. Z.; Wang, Y. Efficient metallization based on nondestructive modification of catechol-tetraethylenepentamine composites and electroless deposition applied to polyethylene terephthalate for flexible electronics. Compos. Commun. 2024, 45, 101792.

[35]

Yang, R. L.; Gui, X. C.; Yao, L.; Hu, Q. M.; Yang, L. L.; Zhang, H.; Yao, Y. T.; Mei, H.; Tang, Z. K. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 66.

[36]

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene). Science 2020, 369, 446–450.

[37]

Liu, L. X.; Chen, W.; Zhang, H. B.; Ye, L. X.; Wang, Z. G.; Zhang, Y.; Min, P.; Yu, Z. Z. Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 2022, 14, 111.

[38]

Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

[39]

Lan, C. T.; Jia, H.; Qiu, M. H.; Fu, S. H. Ultrathin MXene/polymer coatings with an alternating structure on fabrics for enhanced electromagnetic interference shielding and fire-resistant protective performances. ACS Appl. Mater. Interfaces 2021, 13, 38761–38772.

[40]

Xu, T.; Song, Q.; Liu, K.; Liu, H. Y.; Pan, J. J.; Liu, W.; Dai, L.; Zhang, M.; Wang, Y. X.; Si, C. L. et al. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 2023, 15, 98.

[41]

Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.

[42]

Zhou, G. Q.; Li, M. C.; Liu, C. Z.; Wu, Q. L.; Mei, C. T. 3D printed Ti3C2T x MXene/cellulose nanofiber architectures for solid-state supercapacitors: Ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 2022, 32, 2109593.

[43]

Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

[44]

Luo, X. X.; Zhu, L. P.; Wang, Y. C.; Li, J. Y.; Nie, J. J.; Wang, Z. L. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 2021, 31, 2104928.

[45]

Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. N.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

[46]

Wang, G.; Li, C. F.; Estevez, D.; Xu, P.; Peng, M. Y.; Wei, H. J.; Qin, F. X. Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 2023, 15, 152.

[47]

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chem. Mater. 2017, 29, 7633–7644.

[48]

Mohanapriya, S.; Bhat, S. D.; Sahu, A. K.; Manokaran, A.; Vijayakumar, R.; Pitchumani, S.; Sridhar, P.; Shukla, A. K. Sodium-alginate-based proton-exchange membranes as electrolytes for DMFCs. Energy Environ. Sci. 2010, 3, 1746–1756.

[49]

Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.; Grøndahl, L. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 2007, 8, 2533–2541.

[50]

Yang, M. Y.; Huang, M. L.; Li, Y. Z.; Feng, Z. S.; Huang, Y.; Chen, H. J.; Xu, Z. Q.; Liu, H. G.; Wang, Y. Printing assembly of flexible devices with oxidation stable MXene for high performance humidity sensing applications. Sens. Actuators B: Chem. 2022, 364, 131867.

[51]

Rakhi, R. B.; Ahmed, B.; Hedhili, M. N.; Anjum, D. H.; Alshareef, H. N. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CT x MXene electrodes for supercapacitor applications. Chem. Mater. 2015, 27, 5314–5323.

[52]

Wan, S. J.; Li, X.; Wang, Y. L.; Chen, Y.; Xie, X.; Yang, R.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. USA 2020, 117, 27154–27161.

Nano Research
Pages 5326-5335
Cite this article:
Zhang H-W, Yang L-Y, Huang M-L, et al. Flexible MXene/sodium alginate composite fabric with high structural stability and oxidation resistance for electromagnetic interference shielding. Nano Research, 2024, 17(6): 5326-5335. https://doi.org/10.1007/s12274-024-6488-6
Topics:

605

Views

2

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 07 December 2023
Revised: 05 January 2024
Accepted: 14 January 2024
Published: 27 February 2024
© Tsinghua University Press 2024
Return