AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Designed imidazole-based supramolecular catalysts for accelerating oxidation/hydrolysis cascade reactions

Yuanxi Liu1,§Wenjie Xu2,§Shichao Xu1Haifeng Wu1Baoli Zhang1Li Song2Zhen-Gang Wang1( )
State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, China

§ Yuanxi Liu and Wenjie Xu contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

In this work, we report the self-assembly of imidazole with fluorenylmethyloxycarbonyl-modified histidine and Cu2+ to fabricate a supramolecular catalyst, which exhibits the ability to catalyze oxidation/hydrolysis cascade reactions.

Abstract

Reconstructing enzymatic active sites presents a significant challenge due to the intricacies involved in achieving enzyme-like scaffold folding and spatial arrangement of essential functional groups. There is also a growing interest in building biocatalytic networks, wherein multiple enzymatic active sites are localized within a single artificial system, allowing for cascaded transformations. In this work, we report the self-assembly of imidazole or its derivatives with fluorenylmethyloxycarbonyl-modified histidine and Cu2+ to fabricate a supramolecular catalyst, which possesses catechol oxidase-like dicopper center with multiple imidazole as the coordination sphere. Transmission electron microscopy, low-temperature X-band continuous-wave electron paramagnetic resonance, K-edge X-ray absorption spectra/the extended X-ray absorption fine structure analysis, and density functional theory modeling were used for the structural characterization of the catalyst. The phenol derivatives and the dissolved oxygen were used as the substrates, with the addition of 4-aminoantipyrine to generate a red adduct with a maximum absorbance at 510 nm, for obtaining time-dependent absorbance change curves and estimating the activities. The results reveal that the addition of imidazole synergistically accelerates the oxidative activity about 10-fold and the hydrolysis activity about 14-fold than fluorenylmethyloxycarbonyl modified-histidine/Cu2+. The supramolecular nanoassembly also exhibits the ability to catalyze oxidation/hydrolysis cascade reactions, converting 2′,7′-dichlorofluorescin diacetate into 2′,7′-dichlorofluorescein. This process can be regulated through the methylation of the imidazole component at various positions. This work may contribute to the design of advanced biomimetic catalysts, and shed light on early structural models of the active sites of the primitive copper-dependent enzymes.

Electronic Supplementary Material

Download File(s)
12274_2024_6489_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Domínguez, L.; Sosa-Peinado, A.; Hansberg, W. Catalase evolved to concentrate H2O2 at its active site. Arch. Biochem. Biophys. 2010, 500, 82–91.

[2]

Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Multicopper oxidases and oxygenases. Chem. Rev. 1996, 96, 2563–2606.

[3]

Yu, Z. C.; Tang, J.; Gong, H. X.; Gao, Y.; Zeng, Y. Y.; Tang, D. P.; Liu, X. L. Enzyme-encapsulated protein trap engineered metal-organic framework-derived biomineral probes for non-invasive prostate cancer surveillance. Adv. Funct. Mater. 2023, 33, 2301457.

[4]

Zeng, R. J.; Wang, W. J.; Cai, G. N.; Huang, Z. L.; Tao, J. M.; Tang, D. P.; Zhu, C. Z. Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures. Nano Energy 2020, 74, 104931.

[5]

Meeuwissen, J.; Reek, J. N. H. Supramolecular catalysis beyond enzyme mimics. Nat. Chem. 2010, 2, 615–621.

[6]

Shang, Y. S.; Liu, F. S.; Wang, Y. N.; Li, N.; Ding, B. Q. Enzyme mimic nanomaterials and their biomedical applications. ChemBioChem 2020, 21, 2408–2418.

[7]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[8]

Adak, S.; Maity, M. L.; Bandyopadhyay, S. Photoresponsive small molecule enzyme mimics. ACS Omega 2022, 7, 35361–35370.

[9]

Makam, P.; Yamijala, S. S. R. K. C.; Tao, K.; Shimon, L. J. W.; Eisenberg, D. S.; Sawaya, M. R.; Wong, B. M.; Gazit, E. Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nat. Catal. 2019, 2, 977–985.

[10]

Liu, S. W.; Zhang, M. S.; Jin, H.; Wang, Z.; Liu, Y.; Zhang, S. L.; Zhang, H. Iron-containing protein-mimic supramolecular iron delivery systems for ferroptosis tumor therapy. J. Am. Chem. Soc. 2023, 145, 160–170.

[11]

Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem., Int. Ed. 2011, 50, 114–137.

[12]

Liu, Y. X.; Wang, Z. G. Heme-dependent supramolecular nanocatalysts: A review. ACS Nano 2023, 17, 13000–13016.

[13]

Wei, M.; Lee, J.; Xia, F.; Lin, P. H.; Hu, X.; Li, F. Y.; Ling, D. S. Chemical design of nanozymes for biomedical applications. Acta Biomater. 2021, 126, 15–30.

[14]

Solomon, E. I. Dioxygen binding, activation, and reduction to H2O by Cu enzymes. Inorg. Chem. 2016, 55, 6364–6375.

[15]

Jones, S. M.; Solomon, E. I. Electron transfer and reaction mechanism of laccases. Cell. Mol. Life Sci. 2015, 72, 869–883.

[16]

Wang, Z. G.; Li, Y. Z.; Wang, H.; Wan, K. W.; Liu, Q.; Shi, X. H.; Ding, B. Q. Enzyme Mimic Based on a Self-Assembled chitosan/DNA hybrid exhibits superior activity and tolerance. Chem. -Eur. J. 2019, 25, 12576–12582.

[17]

Liu, Q.; Wang, H.; Shi, X. H.; Wang, Z. G.; Ding, B. Q. Self-assembled DNA/peptide-based nanoparticle exhibiting synergistic enzymatic activity. ACS Nano 2017, 11, 7251–7258.

[18]

Teng, Q.; Wu, H. F.; Sun, H.; Liu, Y. X.; Wang, H.; Wang, Z. G. Switchable Enzyme-mimicking catalysts Self-Assembled from de novo designed peptides and DNA G-quadruplex/hemin complex. J. Colloid Interface Sci. 2022, 628, 1004–1011.

[19]

Sun, H.; Wu, H. F.; Teng, Q.; Liu, Y. X.; Wang, H.; Wang, Z. G. Enzyme-mimicking materials from designed self-assembly of lysine-rich peptides and G-quadruplex DNA/hemin DNAzyme: Charge effect of the key residues on the catalytic functions. Biomacromolecules 2022, 23, 3469–3476.

[20]

Deepak, R. N. V. K.; Sankararamakrishnan, R. N-H···N hydrogen bonds involving histidine imidazole nitrogen atoms: A new structural role for histidine residues in proteins. Biochemistry 2016, 55, 3774–3783.

[21]

Sundberg, R. J.; Martin, R. B. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem. Rev. 1974, 74, 471–517.

[22]

Perrotta, A. T.; Shih, I. H.; Been, M. D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 1999, 286, 123–126.

[23]

Holmquist, M. Alpha beta-hydrolase fold enzymes structures, functions and mechanisms. Curr. Protein Pept. Sci. 2000, 1, 209–235.

[24]

Jencks, W. P. Imidazole and proton transfer in catalysis. Biochem. J. 1970, 117, 50p.

[25]

Heppner, D. E.; Kjaergaard, C. H.; Solomon, E. I. Molecular origin of rapid versus slow intramolecular electron transfer in the catalytic cycle of the multicopper oxidases. J. Am. Chem. Soc. 2013, 135, 12212–12215.

[26]

Berglund, G. I.; Carlsson, G. H.; Smith, A. T.; Szöke, H.; Henriksen, A.; Hajdu, J. The catalytic pathway of horseradish peroxidase at high resolution. Nature 2002, 417, 463–468.

[27]

Neuvonen, H. Kinetics and mechanisms of reactions of pyridines and imidazoles with phenyl acetates and trifluoroacetates in aqueous acetonitrile with low content of water: Nucleophilic and general base catalysis in ester hydrolysis. J. Chem. Soc., Perkin Trans. 1987, 159–167

[28]

Koval, I. A.; Gamez, P.; Belle, C.; Selmeczi, K.; Reedijk, J. Synthetic models of the active site of catechol oxidase: Mechanistic studies. Chem. Soc. Rev. 2006, 35, 814–840.

[29]

Supuran, C. T. Structure and function of carbonic anhydrases. Biochem. J. 2016, 473, 2023–2032.

[30]

Solem, E.; Tuczek, F.; Decker, H. Tyrosinase versus catechol oxidase: One asparagine makes the difference. Angew. Chem., Int. Ed. 2016, 55, 2884–2888.

[31]

Healey, R. D.; Couillaud, L.; Hoh, F.; Mouhand, A.; Fouillen, A.; Couvineau, P.; Granier, S.; Leyrat, C. Structure, dynamics and transferability of the metal-dependent polyhistidine tetramerization motif TetrHis for single-chain Fv antibodies. Commun. Chem. 2023, 6, 160.

[32]

Khare, E.; Grewal, D. S.; Buehler, M. J. Bond clusters control rupture force limit in shear loaded histidine-Ni2+ metal-coordinated proteins. Nanoscale 2023, 15, 8578–8588.

[33]

Yum, J. H.; Kumagai, T.; Hori, D.; Sugiyama, H.; Park, S. Histidine-DNA nanoarchitecture as laccase mimetic DNAzymes. Nanoscale 2023, 15, 10749–10754.

[34]

Zhu, X. W.; Luo, D.; Zhou, X. P.; Li, D. Imidazole-based metal-organic cages: Synthesis, structures, and functions. Coord. Chem. Rev. 2022, 455, 214354.

[35]

Gugtapeh, H. S.; Rezaei, M. One-step electrodeposition of a mesoporous Ni/Co-imidazole-based bimetal-organic framework on pyramid-like NiSb with abundant coupling interfaces as an ultra-stable heterostructural electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 2023, 15, 34682–34697.

[36]

Tang, C.; Ulijn, R. V.; Saiani, A. Effect of glycine substitution on fmoc-diphenylalanine self-assembly and gelation properties. Langmuir 2011, 27, 14438–14449.

[37]

Basavalingappa, V.; Bera, S.; Xue, B.; Azuri, I.; Tang, Y. M.; Tao, K.; Shimon, L. J. W.; Sawaya, M. R.; Kolusheva, S.; Eisenberg, D. S. et al. Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nat. Commun. 2019, 10, 5256.

[38]

Smith, A. M.; Williams, R. J.; Tang, C.; Coppo, P.; Collins, R. F.; Turner, M. L.; Saiani, A.; Ulijn, R. V. Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π-π interlocked β-sheets. Adv. Mater. 2008, 20, 37–41.

[39]
Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018 , 9, 1440.
[40]

Wei, X.; Zheng, D.; Zhao, M.; Chen, H. Z.; Fan, X.; Gao, B.; Gu, L.; Guo, Y.; Qin, J. B.; Wei, J. et al. Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 14639–14646.

[41]

Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

[42]

Jayawarna, V.; Ali, M.; Jowitt, T. A.; Miller, A. F.; Saiani, A.; Gough, J. E.; Ulijn, R. V. Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl–dipeptides. Adv. Mater. 2006, 18, 611–614.

[43]

Tao, K.; Yoskovitz, E.; Adler-Abramovich, L.; Gazit, E. Optical property modulation of Fmoc group by pH-dependent self-assembly. RSC Adv. 2015, 5, 73914–73918.

[44]

Carl, P. J.; Larsen, S. C. EPR study of copper-exchanged zeolites: Effects of correlated g-and A-strain, Si/Al ratio, and parent zeolite. J. Phys. Chem. B 2000, 104, 6568–6575.

[45]

Kivelson, D.; Neiman, R. ESR studies on the bonding in copper complexes. J. Chem. Phys. 1961, 35, 149–155.

[46]

Bonomo, R. P.; Riggi, F.; Bilio, A. J. D. EPR reinvestigation of the copper(II)-imidazole system. Inorg. Chem. 1988, 27, 2510–2512.

[47]

Johannsen, S.; Korth, M. M. T.; Schnabl, J.; Sigel, R. K. O. Exploring metal ion coordination to nucleic acids by NMR. Chimia 2009, 63, 146.

[48]
Maity, S.; Gundampati, R. K.; Kumar, T. K. S. NMR methods to characterize protein-ligand interactions. Nat. Prod. Commun. 2019 , 14, 1934578X1984929.
[49]
Teilum, K.; Kunze, M. B. A.; Erlendsson, S.; Kragelund, B. B. (S)Pinning down protein interactions by NMR. Protein Sci. 2017 , 26, 436–451.
[50]

Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn, J. E.; Hodgson, K. O.; Solomon, E. I. X-ray absorption edge determination of the oxidation state and coordination number of copper. Application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen. J. Am. Chem. Soc. 1987, 109, 6433–6442.

[51]

Lee, S. K.; George, S. D.; Antholine, W. E.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J. Am. Chem. Soc. 2002, 124, 6180–6193.

[52]

Hou, Y.; Qiu, M.; Kim, M.; Liu, P.; Nam,G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M.; Yuan, C.; Lei, L.; Feng, X. L. Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392

[53]

Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.

[54]

Makam, P.; Yamijala, S. S. R. K. C.; Bhadram, V. S.; Shimon, L. J. W.; Wong, B. M.; Gazit, E. Single amino acid bionanozyme for environmental remediation. Nat. Commun. 2022, 13, 1505.

[55]

Wei, X.; Zheng, D.; Zhao, M.; Chen, H. Z.; Fan, X.; Gao, B.; Gu, L.; Guo, Y.; Qin, J. B.; Wei, J. et al. Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction. Angew. Chem. 2020, 132, 14747–14754.

[56]

Dou, J.; Lin, P.; Kuang, B. Y.; Yu, J. Z. Reactive oxygen species production mediated by humic-like substances in atmospheric aerosols: Enhancement effects by pyridine, imidazole, and their derivatives. Environ. Sci. Technol. 2015, 49, 6457–6465.

[57]

Scheiner, S.; Yi, M. Y. Proton transfer properties of imidazole. J. Phys. Chem. 1996, 100, 9235–9241.

[58]

Campomanes, P.; Rothlisberger, U.; Alfonso-Prieto, M.; Rovira, C. The molecular mechanism of the catalase-like activity in horseradish peroxidase. J. Am. Chem. Soc. 2015, 137, 11170–11178.

[59]

Clément, J. L.; Ferré, N.; Siri, D.; Karoui, H.; Rockenbauer, A.; Tordo, P. Assignment of the EPR spectrum of 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) superoxide spin adduct. J. Org. Chem. 2005, 70, 1198–1203.

[60]

Gutteridge, J. M. C.; Wilkins, S. Copper salt-dependent hydroxyl radical formation: Damage to proteins acting as antioxidants. Biochim. Biophys. Acta (BBA) - Gen. Subj. 1983, 759, 38–41.

[61]

Hayyan, M.; Hashim, M. A.; AlNashef, I. M. Superoxide ion: Generation and chemical implications. Chem. Rev. 2016, 116, 3029–3085.

[62]

Lengyel, Z.; Rufo, C. M.; Moroz, Y. S.; Makhlynets, O. V.; Korendovych, I. V. Copper-containing catalytic amyloids promote phosphoester hydrolysis and tandem reactions. ACS Catal. 2018, 8, 59–62.

Nano Research
Pages 4916-4923
Cite this article:
Liu Y, Xu W, Xu S, et al. Designed imidazole-based supramolecular catalysts for accelerating oxidation/hydrolysis cascade reactions. Nano Research, 2024, 17(6): 4916-4923. https://doi.org/10.1007/s12274-024-6489-5
Topics:

523

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 10 December 2023
Revised: 11 January 2024
Accepted: 14 January 2024
Published: 07 February 2024
© Tsinghua University Press, corrected publication 2024
Return