AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Room-temperature ferromagnetism and piezoelectricity in metal-free 2D semiconductor crystalline carbon nitride

Yong Wang1,2,§Dingyi Yang1,3,§Wei Xu4,§Yongjie Xu5Yu Zhang6Zixuan Cheng1Yizhang Wu7Xuetao Gan8( )Wei Zhong4Yan Liu1,2( )Genquan Han1,2Yue Hao1,2
Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710071, China
Emerging Device and Chip Laboratory, Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel Boulet, Varennes, QC J3X 1P7, Canada
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China
School of Education, Jiangsu Open University, Nanjing 210036, China
Department of Physics, Shaanxi University of Science and Technology, Xi’an 710021, China
Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129 China

§ Yong Wang, Dingyi Yang, and Wei Xu contributed equally to this work.

Show Author Information

Graphical Abstract

In this study, we successfully synthesized highly crystalline two-dimensional carbon nitride using carbodiimide as a precursor. Structural characterization and theoretical calculations confirmed that the introduction of C–O–C bonds into the highly ordered heptazine structure leads to localized spins and magnetic ordering, resulting in strong room-temperature ferromagnetism. Furthermore, stress can effectively modulate magnetic behavior and piezoelectric potential at room temperature.

Abstract

Two-dimensional (2D) materials that combine ferromagnetic, semiconductor, and piezoelectric properties hold significant potential for both fundamental research and spin electronic devices. However, the majority of reported 2D ferromagnetic-semiconductor-piezoelectric materials rely on d-electron systems, which limits their practical applications due to a Curie temperature lower than room temperature (RT). Here, we report a high-crystallinity carbon nitride (CCN) material based on sp-electrons using a chemical vapor deposition strategy. CCN exhibits a band gap of 1.8 eV and has been confirmed to possess substantial in-plane and out-of-plane piezoelectricity. Moreover, we acquired clear evidences of ferromagnetic behavior at room temperature. Extensive structural characterizations combined with theoretical calculations reveal that incorporating structural oxygen into the highly ordered heptazine structure causes partial substitution of nitrogen sites, which is primarily responsible for generating room-temperature ferromagnetism and piezoelectricity. As a result, the strain in wrinkles can effectively modulate the domain behavior and piezoelectric potential at room temperature. The addition of RT ferromagnetic-semiconductor-piezoelectric material based on sp-electrons to the family of two-dimensional materials opens up numerous possibilities for novel applications in fundamental research and spin electronic devices.

Electronic Supplementary Material

Download File(s)
12274_2024_6491_MOESM1_ESM.pdf (8 MB)

References

[1]

Eerenstein, W.; Wiora, M.; Prieto, J. L.; Scott, J. F.; Mathur, N. D. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 2007, 6, 348–351.

[2]

Christensen, D. V.; Frenkel, Y.; Chen, Y. Z.; Xie, Y. W.; Chen, Z. Y.; Hikita, Y.; Smith, A.; Klein, L.; Hwang, H. Y.; Pryds, N. et al. Strain-tunable magnetism at oxide domain walls. Nat. Phys. 2019, 15, 269–274.

[3]

Ramesh, R.; Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29.

[4]

Ma, J.; Hu, J. M.; Li, Z.; Nan, C. W. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 2011, 23, 1062–1087.

[5]

Lei, N.; Devolder, T.; Agnus, G.; Aubert, P.; Daniel, L.; Kim, J. V.; Zhao, W. S.; Trypiniotis, T.; Cowburn, R. P.; Chappert, C. et al. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nat. Commun. 2013, 4, 1378.

[6]

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

[7]

Jiang, S. W.; Shan, J.; Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406–410.

[8]

Saritas, K.; Ismail-Beigi, S. Piezoelectric ferromagnetism in two-dimensional materials via materials screening. Phys. Rev. B 2022, 106, 134421.

[9]

Kessler, F. K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X. C.; Bojdys, M. J. Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater. 2017, 2, 17030.

[10]

Zelisko, M.; Hanlumyuang, Y.; Yang, S. B.; Liu, Y. M.; Lei, C. H.; Li, J. Y.; Ajayan, P. M.; Sharma, P. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets. Nat. Commun. 2014, 5, 4284.

[11]

Kim, M. J.; Noh, J. Y.; Yun, T. G.; Kang, M. J.; Son, D. H.; Pyun, J. C. Laser-shock-driven in situ evolution of atomic defect and piezoelectricity in graphitic carbon nitride for the ionization in mass spectrometry. ACS Nano 2022, 16, 18284–18297.

[12]

Wang, Y.; Guo, Y.; Wang, Z. K.; Fu, L.; Zhang, Y.; Xu, Y. J.; Yuan, S. J.; Pan, H. Z.; Du, Y. W.; Wang, J. L. et al. Realization of strong room-temperature ferromagnetism in atomically thin 2D carbon nitride sheets by thermal annealing. ACS Nano 2021, 15, 12069–12076.

[13]

Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574.

[14]

Pesin, D.; MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 2012, 11, 409–416.

[15]

Hollen, S. M.; Gupta, J. A. Painting magnetism on a canvas of graphene. Science 2016, 352, 415–416.

[16]

Gao, D. Q.; Xu, Q.; Zhang, J.; Yang, Z. L.; Si, M. S.; Yan, Z. J.; Xue, D. S. Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets. Nanoscale 2014, 6, 2577–2581.

[17]

Xu, K.; Li, X. L.; Chen, P. Z.; Zhou, D.; Wu, C. Z.; Guo, Y. Q.; Zhang, L. D.; Zhao, J. Y.; Wu, X. J.; Xie, Y. Hydrogen dangling bonds induce ferromagnetism in two-dimensional metal-free graphitic-C3N4 nanosheets. Chem. Sci. 2015, 6, 283–287.

[18]

Liu, Y. G.; Liu, P. T.; Sun, C. Q.; Wang, T. T.; Tao, K.; Gao, D. Q. P dopants induced ferromagnetism in g-C3N4 nanosheets: Experiments and calculations. Appl. Phys. Lett. 2017, 110, 222403.

[19]

Du, L. N.; Gao, B.; Xu, S.; Xu, Q. Strong ferromagnetism of g-C3N4 achieved by atomic manipulation. Nat. Commun. 2023, 14, 2278.

[20]

Higgins, M. J.; Proksch, R.; Sader, J. E.; Polcik, M.; Mc Endoo, S.; Cleveland, J. P.; Jarvis, S. P. Noninvasive determination of optical lever sensitivity in atomic force microscopy. Rev. Sci. Instrum. 2006, 77, 013701.

[21]

Green, C. P.; Lioe, H.; Cleveland, J. P.; Proksch, R.; Mulvaney, P.; Sader, J. E. Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 2004, 75, 1988–1996.

[22]

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

[23]

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

[24]

Kresse, G.; Furthmüller, J. Efficiency of ab- initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[25]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[26]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[27]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[28]

Zhai, B. Y.; Li, H. G.; Gao, G. Y.; Wang, Y.; Niu, P.; Wang, S. L.; Li, L. A crystalline carbon nitride based near-infrared active photocatalyst. Adv. Funct. Mater. 2022, 32, 2207375.

[29]

Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

[30]

Chen, Z. P.; Savateev, A.; Pronkin, S.; Papaefthimiou, V.; Wolff, C.; Willinger, M. G.; Willinger, E.; Neher, D.; Antonietti, M.; Dontsova, D. “The easier the better” preparation of efficient photocatalysts-metastable poly (heptazine imide) salts. Adv. Mater. 2017, 29, 1700555

[31]

Guo, F. S.; Hu, B.; Yang, C.; Zhang, J. S.; Hou, Y. D.; Wang, X. C. On-surface polymerization of in-plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas. Adv. Mater. 2021, 33, 2101466.

[32]

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

[33]

Lakhi, K. S.; Park, D. H.; Singh, G.; Talapaneni, S. N.; Ravon, U.; Al-Bahily, K.; Vinu, A. Energy efficient synthesis of highly ordered mesoporous carbon nitrides with uniform rods and their superior CO2 adsorption capacity. J. Mater. Chem. A 2017, 5, 16220–16230.

[34]

Tan, J.; Li, Z. F.; Li, J.; Meng, Y.; Yao, X. L.; Wang, Y. H.; Lu, Y.; Zhang, T. T. Visible-light-assisted peroxymonosulfate activation by metal-free bifunctional oxygen-doped graphitic carbon nitride for enhanced degradation of imidacloprid: Role of non-photochemical and photocatalytic activation pathway. J. Hazard. Mater. 2022, 423, 127048.

[35]

Wang, Y.; Du, P. P.; Pan, H. Z.; Fu, L.; Zhang, Y.; Chen, J.; Du, Y. W.; Tang, N. J.; Liu, G. Increasing solar absorption of atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis. Adv. Mater. 2019, 31, 1807540.

[36]

Huang, Z. F.; Song, J. J.; Pan, L.; Wang, Z. M.; Zhang, X. Q.; Zou, J. J.; Mi, W. B.; Zhang, X. W.; Wang, L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 2015, 12, 646–656.

[37]

Zhang, Y. Z.; Chen, Z. W.; Li, J. L.; Lu, Z. Y.; Wang, X. Self-assembled synthesis of oxygen-doped g-C3N4 nanotubes in enhancement of visible-light photocatalytic hydrogen. J. Energy Chem. 2021, 54, 36–44.

[38]

Xing, W. N.; Li, C. M.; Chen, G.; Han, Z. H.; Zhou, Y. S.; Hu, Y. D.; Meng, Q. Q. Incorporating a novel metal-free interlayer into g-C3N4 framework for efficiency enhanced photocatalytic H2 evolution activity. Appl. Catal. B: Environ. 2017, 203, 65–71.

[39]

Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012, 48, 12017–12019.

[40]

Ming, L. F.; Yue, H.; Xu, L. M.; Chen, F. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A 2014, 2, 19145–19149.

[41]

Liao, G. Z.; Chen, S.; Quan, X.; Yu, H. T.; Zhao, H. M. Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 2012, 22, 2721–2726.

[42]

Duan, H. L.; Guo, P.; Wang, C.; Tan, H.; Hu, W.; Yan, W. S.; Ma, C.; Cai, L.; Song, L.; Zhang, W. H. et al. Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun. 2019, 10, 1584.

[43]

Uzundal, C. B.; Jamnuch, S.; Berger, E.; Woodahl, C.; Manset, P.; Hirata, Y.; Sumi, T.; Amado, A.; Akai, H.; Kubota, Y. et al. Polarization-resolved extreme-ultraviolet second-harmonic generation from LiNbO3. Phys. Rev. Lett. 2021, 127, 237402.

[44]

Yu, J. X.; Esfahani, E. N.; Zhu, Q. F.; Shan, D. L.; Jia, T. T.; Xie, S. H.; Li, J. Y. Quadratic electromechanical strain in silicon investigated by scanning probe microscopy. J. Appl. Phys. 2018, 123, 155104.

[45]

Xie, S. H.; Gannepalli, A.; Chen, Q. N.; Liu, Y. M.; Zhou, Y. C.; Proksch, R.; Li, J. Y. High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity. Nanoscale 2012, 4, 408–413.

[46]

Hu, C.; Chen, F.; Wang, Y. G.; Tian, N.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Exceptional cocatalyst-free photo-enhanced piezocatalytic hydrogen evolution of carbon nitride nanosheets from strong in-plane polarization. Adv. Mater. 2021, 33, 2101751.

[47]

Wang, Y.; Guo, Y.; Zeng, C. X.; Yang, D. Y.; Zhang, Y.; Wu, L. T.; Wu, Y. Z.; Hao, J.; Wang, J. L.; Yang, R. S. Realizing a strong visible-light absorption band in piezoelectric 2D carbon nitride sheets for enhanced piezocatalysis. Nano Energy 2022, 104, 107983.

[48]

Rodriguez, B. J.; Callahan, C.; Kalinin, S. V.; Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 2007, 18, 475504.

[49]

Buragohain, P.; Lu, H. D.; Richter, C.; Schenk, T.; Kariuki, P.; Glinsek, S.; Funakubo, H.; Íñiguez, J.; Defay, E.; Schroeder, U. et al. Quantification of the electromechanical measurements by piezoresponse force microscopy. Adv. Mater. 2022, 34, 2206237.

[50]

Gruverman, A.; Alexe, M.; Meier, D. Piezoresponse force microscopy and nanoferroic phenomena. Nat. Commun. 2019, 10, 1661.

[51]

Zhao, Z. F.; Pu, X.; Han, C. B.; Du, C. H.; Li, L. X.; Jiang, C. Y.; Hu, W. G.; Wang, Z. L. Piezotronic effect in polarity-controlled GaN nanowires. ACS Nano 2015, 9, 8578–8583.

[52]

An, C. H.; Qi, H.; Wang, L. F.; Fu, X.; Wang, A. C.; Wang, Z. L.; Liu, J. Piezotronic and piezo-phototronic effects of atomically-thin ZnO nanosheets. Nano Energy 2021, 82, 105653.

[53]

Zhou, Y. S.; Hinchet, R.; Yang, Y.; Ardila, G.; Songmuang, R.; Zhang, F.; Zhang, Y.; Han, W. H.; Pradel, K.; Montès, L. et al. Nano-newton transverse force sensor using a vertical GaN nanowire based on the piezotronic effect. Adv. Mater. 2013, 25, 883–888.

[54]

Guo, S. S.; Henschel, M.; Wolf, D.; Pohl, D.; Lubk, A.; Blon, T.; Neu, V.; Leistner, K. Size-specific magnetic configurations in electrodeposited epitaxial iron nanocuboids: From landau pattern to vortex and single domain states. Nano Lett. 2022, 22, 4006–4012.

[55]

Yan, H.; Feng, Z. X.; Shang, S. L.; Wang, X. N.; Hu, Z. X.; Wang, J. H.; Zhu, Z. W.; Wang, H.; Chen, Z. H.; Hua, H. et al. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat. Nanotechnol. 2019, 14, 131–136.

[56]

Sando, D.; Agbelele, A.; Rahmedov, D.; Liu, J.; Rovillain, P.; Toulouse, C.; Infante, I. C.; Pyatakov, A. P.; Fusil, S.; Jacquet, E. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 2013, 12, 641–646.

[57]

O’Neill, A.; Rahman, S.; Zhang, Z.; Schoenherr, P.; Yildirim, T.; Gu, B.; Su, G.; Lu, Y. R.; Seidel, J. Enhanced room temperature ferromagnetism in highly strained 2D semiconductor Cr2Ge2Te6. ACS Nano 2023, 17, 735–742.

[58]

Zhu, S. Z.; Stroscio, J. A.; Li, T. Programmable extreme pseudomagnetic fields in graphene by a uniaxial stretch. Phys. Rev. Lett. 2015, 115, 245501.

[59]

Bustamante, J. V.; Wu, N. J.; Fermon, C.; Pannetier-Lecoeur, M.; Wakamura, T.; Watanabe, K.; Taniguchi, T.; Pellegrin, T.; Bernard, A.; Daddinounou, S. et al. Detection of Graphene’s divergent orbital diamagnetism at the Dirac point. Science 2021, 374, 1399–1402.

[60]

Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163–169.

Nano Research
Pages 5670-5679
Cite this article:
Wang Y, Yang D, Xu W, et al. Room-temperature ferromagnetism and piezoelectricity in metal-free 2D semiconductor crystalline carbon nitride. Nano Research, 2024, 17(6): 5670-5679. https://doi.org/10.1007/s12274-024-6491-y
Topics:

680

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 12 October 2023
Revised: 30 December 2023
Accepted: 15 January 2024
Published: 22 February 2024
© Tsinghua University Press 2024
Return