Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nanozyme is a new promising approach to cancer therapy for its ability to induce ferroptosis by activating H2O2 via a traditional radical pathway and enhance cancer immunotherapy. However, short half-life period of hydroxyl radical (·OH) results in unsatisfied effectiveness. Herein, we synthesized a single-atom iron nanozyme (Fe-SAzyme), which can activate H2O2 via a non-radical pathway to generate Fe-based reactive oxygen species (ROS) (O=FeO3=O) for promoting the ferroptosis of pancreatic cancer cells. This Fe-SAzyme could be specifically phagocytosed by pancreatic cancer cells, increasing ROS levels and inhibiting glutathione (GSH) synthesis, which activates ferroptosis. Tumor magnetic resonance imaging (MRI) showed decreased T2 signal after intravenous injection of RGD@Fe-AC (AC = activated carbon). Moreover, RGD@Fe-AC promoted dendritic cell (DC) maturation, overcame Treg-mediated immunosuppression, activated T cells to trigger adaptive immune responses, and enhanced the efficacy of α-PD-L1 immunotherapy. Our research demonstrated that RGD@Fe-AC provided a straightforward, easily implemented, and selective approach for pancreatic cancer treatment and immunotherapy.
Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.
Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.
Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. Cancer treatment through nanoparticle-facilitated fenton reaction. ACS Nano 2018, 12, 11819–11837.
Wen, Q. R.; Liu, J.; Kang, R.; Zhou, B. R.; Tang, D. L. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 2019, 510, 278–283.
Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412–5419.
Liu, J. M.; Wang, A. Z.; Liu, S. H.; Yang, R. Q.; Wang, L. W.; Gao, F.; Zhou, H. G.; Yu, X.; Liu, J.; Chen, C. Y. A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 25328–25338.
Zhang, R. F.; Xue, B.; Tao, Y. H.; Zhao, H. Q.; Zhang, Z. X.; Wang, X. N.; Zhou, X. Y.; Jiang, B.; Yang, Z. L.; Yan, X. Y. et al. Edge-site engineering of defective Fe-N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv. Mater. 2022, 34, 2205324.
Lu, X. Y.; Gao, S. S.; Lin, H.; Shi, J. L. Single-atom catalysts for nanocatalytic tumor therapy. Small 2021, 17, 2004467.
Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.
Ryan, D. P.; Hong, T. S.; Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med. 2014, 371, 1039–1049.
Kamisawa, T.; Wood, L. D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet 2016, 388, 73–85.
Musa, M. Single-cell analysis on stromal fibroblasts in the microenvironment of solid tumours. Adv. Med. Sci. 2020, 65, 163–169.
Vincent, A.; Herman, J.; Schulick, R.; Hruban, R. H.; Goggins, M. Pancreatic cancer. Lancet 2011, 378, 607–620.
Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018, 32, 1267–1284.
Tanaka, A.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017, 27, 109–118.
Clark, C. E.; Beatty, G. L.; Vonderheide, R. H. Immunosurveillance of pancreatic adenocarcinoma: Insights from genetically engineered mouse models of cancer. Cancer Lett. 2009, 279, 1–7.
Thomas, N.; Dionysiou, D. D.; Pillai, S. C. Heterogeneous Fenton catalysts: A review of recent advances. J. Hazard Mater. 2021, 404, 124082.
Li, J. J.; Ke, W. D.; Wang, L.; Huang, M. M.; Yin, W.; Zhang, P.; Chen, Q. X.; Ge, Z. S. Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy. J. Control. Release 2016, 225, 64–74.
Zeng, F. T.; Tang, L. G.; Zhang, Q. Y.; Shi, C. R.; Huang, Z. C.; Nijiati, S.; Chen, X. Y.; Zhou, Z. J. Coordinating the mechanisms of action of ferroptosis and the photothermal effect for cancer theranostics. Angew. Chem., Int. Ed. 2022, 61, e202112925.
Sun, R.; Ma, W.; Ling, M. J.; Tang, C. H.; Zhong, M.; Dai, J. Y.; Zhu, M. Y.; Cai, X. Z.; Li, G.; Xu, Q. et al. pH-activated nanoplatform for visualized photodynamic and ferroptosis synergistic therapy of tumors. J. Control. Release 2022, 350, 525–537.
Chen, X.; Tian, Z. Q.; Yang, Q. H.; Zhang, L. J.; Yang, Q.; Chen, L.; Lu, Z. Y. Cost-effective H2O2-regeneration of powdered activated carbon by isolated Fe sites. Adv. Sci. (Weinh.) 2023, 10, 2204079.
Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.
Wang, S. H.; Luo, J.; Zhang, Z. H.; Dong, D. D.; Shen, Y.; Fang, Y. W.; Hu, L. J.; Liu, M. Y.; Dai, C. F.; Peng, S. et al. Iron and magnetic: New research direction of the ferroptosis-based cancer therapy. Am. J. Cancer Res. 2018, 8, 1933–1946.
Liu, J. K.; Shen, W. L.; Zhao, B. L.; Wang, Y.; Wertz, K.; Weber, P.; Zhang, P. F. Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: Hope from natural mitochondrial nutrients. Adv. Drug Deliv. Rev. 2009, 61, 1343–1352.
Botting, K. J.; Skeffington, K. L.; Niu, Y.; Allison, B. J.; Brain, K. L.; Itani, N.; Beck, C.; Logan, A.; Murray, A. J.; Murphy, M. P. et al. Translatable mitochondria-targeted protection against programmed cardiovascular dysfunction. Sci. Adv. 2020, 6, eabb1929.
Zheng, Y. R.; Suntharalingam, K.; Johnstone, T. C.; Lippard, S. J. Encapsulation of Pt(IV) prodrugs within a Pt(II) cage for drug delivery. Chem. Sci. 2015, 6, 1189–1193.
Bulte, J. W. M.; Kraitchman, D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004, 17, 484–499.
Garg, A. D.; Agostinis, P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol. Rev. 2017, 280, 126–148.
Krysko, D. V.; Garg, A. D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 2012, 12, 860–875.
Banchereau, J.; Steinman, R. M. Dendritic cells and the control of immunity. Nature 1998, 392, 245–252.
Byrne, A.; Savas, P.; Sant, S.; Li, R.; Virassamy, B.; Luen, S. J.; Beavis, P. A.; Mackay, L. K.; Neeson, P. J.; Loi, S. Tissue-resident memory T cells in breast cancer control and immunotherapy responses. Nat. Rev. Clin. Oncol. 2020, 17, 341–348.
Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34.
Li, S. D.; Ma, M.; Li, H.; Waluszko, A.; Sidorenko, T.; Schadt, E. E.; Zhang, D. Y.; Chen, R.; Ye, F. Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications. Genome Med. 2017, 9, 89.
Son, J.; Lyssiotis, C. A.; Ying, H. Q.; Wang, X. X.; Hua, S. J.; Ligorio, M.; Perera, R. M.; Ferrone, C. R.; Mullarky, E.; Shyh-Chang, N. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013, 496, 101–105.
Moore, A. R.; Rosenberg, S. C.; McCormick, F.; Malek, S. Author correction: RAS-targeted therapies: Is the undruggable drugged? Nat. Rev. Drug Discov. 2020, 19, 902.
Davis, P. J.; Goglia, F.; Leonard, J. L. Nongenomic actions of thyroid hormone. Nat. Rev. Endocrinol. 2016, 12, 111–121.