AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Silicon dioxide-protection boosting the peroxidase-like activity of Fe single-atom catalyst for combining chemo-photothermal therapy

Yu Fan1Yu Yi2( )Hongpan Rong1( )Jiatao Zhang3( )
Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
CAS Center for Excellence in Nanoscience, CAS KeyLaboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry & Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

The decoration of silicon dioxide serves as a buffer layer for individual nanoparticles, which is not destroyed during the pyrolysis process, ensuring the single-particle dispersion of the nanoparticles after etching. Silicon dioxide-protection effectively improved the peroxidase (POD)-like activity of Fe single-atom catalyst, endowing it with excellent tumor-killing properties at the cellular level.

Abstract

Carbon-based single-atom catalysts (SACs) have been widely studied in the field of biomedicine due to their excellent catalytic performance. However, carbon-based SACs usually aggregate during pyrolysis, which leads to the reduction of catalytic activity. Here, we describe a method to improve the monodispersion of SACs using silicon dioxide as a protective layer. The decoration of silicon dioxide serves as a buffer layer for individual nanoparticles, which is not destroyed during the pyrolysis process, ensuring the single-particle dispersion of the nanoparticles after etching. This approach increased the hydroxyl groups on the surface of Fe-SAC (Fe-SAC-SE) and improved its water solubility, resulting in a four times enhancement of the peroxidase (POD)-like activity of Fe-SAC-SE (58.4 U/mg) than that of non-protected SACs (13.9 U/mg). The SiO2-protection approach could also improve the catalytic activities of SACs with other metals such as Mn, Co, Ni, and Cu, indicating its generality for SACs preparation. Taking advantage of the high POD-like activity, photothermal properties, and large specific surface area of Fe-SAC-SE, we constructed a synergistic therapeutic system (Fe-SAC-SE@DOX@PEG) for combining the photothermal therapy, catalytic therapy, and chemotherapy. It was verified that the photothermal properties of Fe-SAC-SE@DOX@PEG could effectively improve its POD-like activity, exhibiting excellent tumor-killing performance at the cellular level. This work may provide a general approach to improve the performances of SACs for disease therapy and diagnosis.

Electronic Supplementary Material

Download File(s)
12274_2024_6495_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Zhang, L.; Meng, Q. L.; Zheng, R. X.; Wang, L. Q.; Xing, W.; Cai, W. W.; Xiao, M. L. Microenvironment regulation of M-N-C single-atom catalysts towards oxygen reduction reaction. Nano Res. 2023, 16, 4468–4487.

[2]

He, J. S.; Liu, P. Y.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. P. Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: Distinctive roles, unique fabrication methods and specific design strategies. J. Mater. Chem. 2022, 10, 6835–6871.

[3]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[4]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[5]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[6]
Yang, J. R.; Li, W. H.; Tang, H. T.; Pan, Y. M.; Wang, D. S.; Li, Y. D. CO2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 2023 , 617, 519–523.
[7]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[8]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p- n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[9]

Ma, W. J.; Mao, J. J.; Yang, X. T.; Pan, C.; Chen, W. X.; Wang, M.; Yu, P.; Mao, L. Q.; Li, Y. D. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2019, 55, 159–162.

[10]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[11]

Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

[12]
Peng, C.; Pang, R. Y.; Li, J.; Wang, E. K. Current advances on the single-atom nanozyme and its bioapplications. Adv. Mater., in press, DOI: 10.1002/adma.202211724.
[13]

Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-Atom catalysts. ACS Nano 2021, 15, 2005–2037.

[14]

Fan, H.;Zhang, R.;Fan, K.;Gao, L.; Yan, X. Exploring the specificity of nanozymes. ACS Nano 2024, 18, 2533–2540.

[15]

Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.

[16]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature Zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[17]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-Air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[18]

Fu, X. L.; Zhao, X.; Lu, T. B.; Yuan, M. J.; Wang, M. Graphdiyne-based single-atom catalysts with different coordination environments. Angew. Chem., Int. Ed. 2023, 62, e202219242.

[19]

Zhu, Y.; Gong, P.; Wang, J.; Cheng, J. J.; Wang, W. Y.; Cai, H. L.; Ao, R. J.; Huang, H. W.; Yu, M. L.; Lin, L. S. et al. Amplification of lipid peroxidation by regulating cell membrane unsaturation To enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2023, 62, e202218407.

[20]

Mateen, M.; Cheong, W. C.; Zheng, C.; Talib, S. H.; Zhang, J.; Zhang, X. M.; Liu, S. J.; Chen, C.; Li, Y. D. Molybdenum atomic sites embedded 1D carbon nitride nanotubes as highly efficient bifunctional photocatalyst for tetracycline degradation and hydrogen evolution. Chem. Eng. J. 2023, 451, 138305.

[21]

Liu, X. G.; Huang, D. L.; Lai, C.; Qin, L.; Liu, S. Y.; Zhang, M. M.; Fu, Y. K. Single cobalt atom anchored on carbon nitride with cobalt nitrogen/oxygen active sites for efficient Fenton-like catalysis. J. Colloid Interface Sci. 2022, 629, 417–427.

[22]

Fu, H. Y.; Wei, J. Q.; Chen, G. L.; Xu, M. K.; Liu, J. Y.; Zhang, J. H.; Li, K.; Xu, Q. Y.; Zou, Y. J.; Zhang, W. X. et al. Axial coordination tuning Fe single-atom catalysts for boosting H2O2 activation. Appl. Catal. B 2023, 321, 122012.

[23]

Yang, X.; Xiang, J. H.; Su, W.; Guo, J. F.; Deng, J. J.; Tang, L. J.; Li, G. H.; Liang, Y. L.; Zheng, L.; He, M. L. et al. Modulating Pt nanozyme by using isolated cobalt atoms to enhance catalytic activity for alleviating osteoarthritis. Nano Today 2023, 49, 101809.

[24]

Tang, Y.; Liu, Y. W.; Xia, Y. D.; Zhao, F. Q.; Zeng, B. Z. Simultaneous detection of ovarian cancer-concerned HE4 and CA125 markers based on Cu single-atom-triggered CdS QDs and Eu MOF@Isoluminol ECL. Anal. Chem. 2023, 95, 4795–4802.

[25]

Xia, P.; Wang, C. H.; He, Q.; Ye, Z. H.; Sirés, I. MOF-derived single-atom catalysts: The next frontier in advanced oxidation for water treatment. Chem. Eng. J. 2023, 452, 139446.

[26]

Zou, Y. B.; Hu, J. H.; Li, B.; Lin, L.; Li, Y.; Liu, F. F.; Li, X. Y. Tailoring the coordination environment of cobalt in a single-atom catalyst through phosphorus doping for enhanced activation of peroxymonosulfate and thus efficient degradation of sulfadiazine. Appl. Catal. B 2022, 312, 121408.

[27]

Luo, F.; Wagner, S.; Ju, W.; Primbs, M.; Li, S.; Wang, H.; Kramm, U. I.; Strasser, P. Kinetic diagnostics and synthetic design of platinum group metal-free electrocatalysts for the oxygen reduction reaction using reactivity maps and site utilization descriptors. J. Am. Chem. Soc. 2022, 144, 13487–13498.

[28]

Jiao, L.; Xu, W. Q.; Wu, Y.; Wang, H. J.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. On the road from single-atom materials to Highly sensitive electrochemical sensing and biosensing. Anal. Chem. 2023, 95, 433–443.

[29]
Ding, S. C.; Barr, J. A.; Lyu, Z. Y.; Zhang, F. Y.; Wang, M. Y.; Tieu, P.; Li, X.; Engelhard, M. H.; Feng, Z. X.; Beckman, S. P. et al. Effect of phosphorus modulation in Iron single-atom catalysts for peroxidase mimicking. Adv. Mater., in press, DOI: 10.1002/adma.202209633.
[30]

Zhao, Y. M.; Jiang, Y. H.; Mo, Y.; Zhai, Y. M.; Liu, J. J.; Strzelecki, A. C.; Guo, X. F.; Shan, C. S. Boosting electrochemical catalysis and nonenzymatic sensing toward glucose by single-atom Pt supported on Cu@CuO core-shell nanowires. Small 2023, 19, 2207240.

[31]

Liu, L. Y.; Mao, C. L.; Fu, H. Y.; Qu, X. L.; Zheng, S. R. ZnO nanorod-immobilized Pt single-atoms as an ultrasensitive sensor for triethylamine detection. ACS Appl. Mater. Interfaces 2023, 15, 16654–16663.

[32]

Liu, S. E.; Jiang, Y. X.; Liu, P. C.; Yi, Y.; Hou, D. Y.; Li, Y.; Liang, X.; Wang, Y. F.; Li, Z.; He, J. et al. Single-atom gadolinium nano-contrast agents with high stability for tumor T1 magnetic resonance imaging. ACS Nano 2023, 17, 8053–8063.

[33]

Wu, F.; Ma, J. H.; Wang, Y.; Xie, L. P.; Yan, X. J.; Shi, L. Q.; Li, Y. F.; Liu, Y. Single copper atom photocatalyst powers an integrated catalytic cascade for drug-resistant bacteria elimination. ACS Nano 2023, 17, 2980–2991.

[34]

Jiang, Y. X.; Rong, H. T.; Wang, Y. F.; Liu, S. E.; Xu, P.; Luo, Z.; Guo, L. M.; Zhu, T.; Rong, H. P.; Wang, D. S. et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res. 2023, 16, 9752–9759.

[35]

Xing, Y.; Xiu, J. D.; Zhou, M. Y.; Xu, T. L.; Zhang, M. Q.; Li, H.; Li, X. Y.; Du, X.; Ma, T. Y.; Zhang, X. J. Copper single-atom jellyfish-like nanomotors for enhanced tumor penetration and nanocatalytic therapy. ACS Nano 2023, 17, 6789–6799.

[36]

Chen, Q. Q.; Zhang, M.; Huang, H.; Dong, C. H.; Dai, X. Y.; Feng, G. Y.; Lin, L.; Sun, D. D.; Yang, D. Y.; Xie, L. et al. Single atom-doped nanosonosensitizers for mutually optimized sono/chemo-nanodynamic therapy of triple negative breast cancer. Adv. Sci. 2023, 10, 2206244.

[37]

Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

[38]

Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. J.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

[39]

Jorgensen, W. L.; Duffy, E. M. Prediction of drug solubility from structure. Adv. Drug Delivery Rev. 2002, 54, 355–366.

[40]

Khan, K. U.; Minhas, M. U.; Badshah, S. F.; Suhail, M.; Ahmad, A.; Ijaz, S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022, 291, 120301.

[41]

Kharissova, O. V.; Kharisov, B. I.; de Casas Ortiz, E. G. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv. 2013, 3, 24812–24852.

[42]

Blanch, A. J.; Lenehan, C. E.; Quinton, J. S. Optimizing surfactant concentrations for dispersion of single-walled Carbon nanotubes in aqueous solution. J. Phys. Chem. B 2010, 114, 9805–9811.

[43]

Kim, H.; Min, K. J.; Bang, S.; Hwang, J. Y.; Kim, J. H.; Yoon, C. S.; Sun, Y. K. Long-lasting, reinforced electrical networking in a high-loading Li2S cathode for high-performance lithium-sulfur batteries. Carbon Energy 2023, 5, e308.

[44]

Motaee, A.; Javadian, S.; Khosravian, M. Influence of adsorption energy in graphene production via surfactant-assisted exfoliation of graphite: A graphene-dispersant design. ACS Appl. Nano Mater. 2021, 4, 3545–3556.

[45]

Rennhofer, H.; Zanghellini, B. Dispersion state and damage of carbon nanotubes and carbon nanofibers by ultrasonic dispersion: A review. Nanomaterials 2021, 11, 1469.

[46]

Wang, S. H.; Shang, L.; Li, L. L.; Yu, Y. J.; Chi, C. W.; Wang, K.; Zhang, J.; Shi, R.; Shen, H. Y.; Waterhouse, G. I. N. et al. Metal-organic-framework-derived mesoporous carbon nanospheres containing porphyrin-Like Metal centers for conformal phototherapy. Adv. Mater. 2016, 28, 8379–8387.

[47]

Fan, H. Z.; Li, Y. Y.; Liu, J. B.; Cai, R.; Gao, X. S.; Zhang, H.; Ji, Y. L.; Nie, G. J.; Wu, X. C. Plasmon-enhanced oxidase-like activity and cellular effect of Pd-coated gold nanorods. ACS Appl. Mater. Interfaces 2019, 11, 45416–45426.

[48]
Fan, H. Z.; Zheng, J. J.; Xie, J. Y.; Liu, J. W.; Gao, X. F.; Yan, X. Y.; Fan, K. L.; Gao, L. Z. Surface ligand engineering ruthenium nanozyme superior to horseradish peroxidase for enhanced immunoassay. Adv. Mater., in press, DOI: 10.1002/adma.202300387.
[49]

Fan, H. Z.; Fan, Y.; Du, W. N.; Cai, R.; Gao, X. S.; Liu, X. F.; Wang, H.; Wang, L.; Wu, X. C. Enhanced type I photoreaction of indocyanine green via electrostatic-force-driven aggregation. Nanoscale 2020, 12, 9517–9523.

[50]

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

Nano Research
Pages 4924-4933
Cite this article:
Fan Y, Yi Y, Rong H, et al. Silicon dioxide-protection boosting the peroxidase-like activity of Fe single-atom catalyst for combining chemo-photothermal therapy. Nano Research, 2024, 17(6): 4924-4933. https://doi.org/10.1007/s12274-024-6495-7
Topics:

567

Views

4

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 15 May 2023
Revised: 04 January 2024
Accepted: 18 January 2024
Published: 09 February 2024
© Tsinghua University Press 2024
Return