Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Perovskite oxides (POs) are emerging as a class of highly efficient catalysts for reducing oxygen to H2O. Although a rich variety of POs-based catalysts have been developed by tuning the complex composition, a highly efficient PO catalyst that is able to alter the reaction pathway from a 4e− process to a 2e− process for H2O2 production has rarely been achieved. We modified the structure and composition of a Ca- and Nb-based PO material by realizing a uniform two-dimensional (2D) morphology and varied Ta doping, resulting in the 2D Ca2Nb3−xTaxO10− (x = 0, 0.5, 1, and 1.5) monolayer catalysts. The obtained catalysts exhibit a dominant 2e− pathway and show exceptional H2O2 production efficiency. The typical Ca2Nb2.5Ta0.5O10− nanoflakes showed an onset potential of 0.735 V vs. reversible hydrogen electrode (RHE), a remarkably high selectivity over 95% across a wide range of 0.3–0.7 V, an impressively high Faradaic efficiency of 94%, and a notable H2O2 productivity of 1571 mmol·gcat−1·h−1. These findings highlight the great potential of 2D perovskite oxide nanoflakes as advanced electrocatalysts for 2e− oxygen reduction reaction.
Brillas, E.; Sirés, I.; Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631.
Hage, R.; Lienke, A. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angew. Chem., Int. Ed. 2005, 45, 206–222.
Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.
Xu, X. H.; Gao, Y.; Yang, Q.; Liang, T.; Luo, B.; Kong, D. B.; Li, X. L.; Zhi, L. J.; Wang, B. Regulating the activity of intrinsic sites in covalent organic frameworks by introducing electro-withdrawing groups towards highly selective H2O2 electrosynthesis. Nano Today 2023, 49, 101792.
Yi, Y. H.; Wang, L.; Li, G.; Guo, H. C. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: Noble-metal catalytic method, fuel-cell method and plasma method. Catal. Sci. Technol. 2016, 6, 1593–1610.
Xu, S. S.; Gao, Y.; Liang, T.; Zhang, L. P.; Wang, B. N,O-coupling towards the selectively electrochemical production of H2O2. Chin. Chem. Lett. 2022, 33, 5152–5157.
Dong, K.; Liang, J.; Wang, Y. Y.; Zhang, L. C.; Xu, Z. Q.; Sun, S. J.; Luo, Y. S.; Li, T. S.; Liu, Q.; Li, N. et al. Conductive two-dimensional magnesium metal-organic frameworks for high-efficiency O2 electroreduction to H2O2. ACS Catal. 2022, 12, 6092–6099.
Wang, M. J.; Dong, X.; Meng, Z. D.; Hu, Z. W.; Lin, Y. G.; Peng, C. K.; Wang, H. S.; Pao, C. W.; Ding, S. Y.; Li, Y. Y. et al. An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem., Int. Ed. 2021, 60, 11190–11195.
Zhang, C. Q.; Yuan, L.; Liu, C.; Li, Z. M.; Zou, Y. Y.; Zhang, X. C.; Zhang, Y.; Zhang, Z. Q.; Wei, G. F.; Yu, C. Z. Crystal engineering enables cobalt-based metal-organic frameworks as high-performance electrocatalysts for H2O2 production. J. Am. Chem. Soc. 2023, 145, 7791–7799.
Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.
Zhang, B. W.; Zheng, T.; Wang, Y. X.; Du, Y.; Chu, S. Q.; Xia, Z. H.; Amal, R.; Dou, S. X.; Dai, L. M. Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide. Commun. Chem. 2022, 5, 43.
Gong, H. S.; Wei, Z. X.; Gong, Z. C.; Liu, J. J.; Ye, G. L.; Yan, M. M.; Dong, J. C.; Allen, C.; Liu, J. B.; Huang, K. et al. Low-coordinated Co-N-C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 2022, 32, 2106886.
Sheng, H. Y.; Hermes, E. D.; Yang, X. H.; Ying, D. W.; Janes, A. N.; Li, W. J.; Schmidt, J. R.; Jin, S. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 2019, 9, 8433–8442.
Gao, R. J.; Pan, L.; Li, Z. W.; Shi, C. X.; Yao, Y. D.; Zhang, X. W.; Zou, J. J. Engineering facets and oxygen vacancies over hematite single crystal for intensified electrocatalytic H2O2 production. Adv. Funct. Mater. 2020, 30, 1910539.
Liu, C.; Li, H.; Chen, J. S.; Yu, Z. X.; Ru, Q.; Li, S. Z.; Henkelman, G.; Wei, L.; Chen, Y. 3D transition-metal-mediated columbite nanocatalysts for decentralized electrosynthesis of hydrogen peroxide. Small 2021, 17, 2007249
Tian, Y. H.; Li, M.; Wu, Z. Z.; Sun, Q.; Yuan, D.; Johannessen, B.; Xu, L.; Wang, Y.; Dou, Y. H.; Zhao, H. J. et al. Edge-hosted atomic Co-N4 Sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202213296.
Lin, L. X.; Huang, L.; Wu, C.; Gao, Y.; Miao, N. H.; Wu, C.; Marshall, A. T.; Zhao, Y.; Wang, J. Z.; Chen, J. et al. Lattice distortion and H-passivation in pure carbon electrocatalysts for efficient and stable two-electron oxygen reduction to H2O2. Angew. Chem., Int. Ed. 2023, 62, e202315182.
Peng, W.; Liu, J. X.; Liu, X. Q.; Wang, L. Q.; Yin, L. C.; Tan, H. T.; Hou, F.; Liang, J. Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production. Nat. Commun. 2023, 14, 4430.
Yan, M. M.; Wei, Z. X.; Gong, Z. C.; Johannessen, B.; Ye, G. L.; He, G. C.; Liu, J. J.; Zhao, S. L.; Cui, C. Y.; Fei, H. L. Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis. Nat. Commun. 2023, 14, 368.
Zhang, P. P.; Wang, F. X.; Yu, M. H.; Zhuang, X. D.; Feng, X. L. Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems. Chem. Soc. Rev. 2018, 47, 7426–7451.
Wei, Y. C.; Weng, Z.; Guo, L. C.; An, L.; Yin, J.; Sun, S. Y.; Da, P. F.; Wang, R.; Xi, P. X.; Yan, C. H. Activation strategies of perovskite-type structure for applications in oxygen-related electrocatalysts. Small Methods 2021, 5, 2100012.
Zhang, M. F.; Jeerh, G.; Zou, P. M.; Lan, R.; Wang, M. T.; Wang, H. T.; Tao, S. W. Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Mater. Today 2021, 49, 351–377.
Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.
Wang, K.; Han, C.; Shao, Z. P.; Qiu, J. S.; Wang, S. B.; Liu, S. M. Perovskite oxide catalysts for advanced oxidation reactions. Adv. Funct. Mater. 2021, 31, 2102089.
Zhao, X. M.; Liu, T. R.; Loo, Y. L. Advancing 2D perovskites for efficient and stable solar cells: Challenges and opportunities. Adv. Mater. 2022, 34, 2105849.
Even, J.; Pedesseau, L.; Katan, C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 2014, 118, 11566–11572.
Ji, Q. Q.; Bi, L.; Zhang, J. T.; Cao, H. J.; Zhao, X. S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428.
Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.
Beall, C. E.; Fabbri, E.; Schmidt, T. J. Perovskite oxide based electrodes for the oxygen reduction and evolution reactions: The underlying mechanism. ACS Catal. 2021, 11, 3094–3114.
Wen, S. D.; Liu, B. W.; Li, W.; Liang, T.; Li, X. L.; Yi, D.; Luo, B.; Zhi, L. J.; Liu, D.; Wang, B. A battery process activated highly efficient carbon catalyst toward oxygen reduction by stabilizing lithium-oxygen bonding. Adv. Funct. Mater. 2022, 32, 2203960.
Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869–9921.
Xu, F. F.; Ebina, Y.; Bando, Y.; Sasaki, T. Structural characterization of (TBA, H)Ca2Nb3O10 nanosheets formed by delamination of a precursor-layered perovskite. J. Phys. Chem. B 2003, 107, 9638–9645.
Ma, R. Z.; Sasaki, T. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites. Adv. Mater. 2010, 22, 5082–5104.
Li, H. H.; Liu, B. W.; Yang, X. C.; Gao, Y.; Luo, X.; Guan, X. Y.; Zhang, Z.; Yu, Z. L.; Wang, B. Liquid phase exfoliation of indium selenide: Achieving the optimum exfoliating parameters and unraveling the mechanism. Prog. Nat. Sci.: Mater. Int. 2022, 32, 700–704.
Maeda, K.; Eguchi, M.; Oshima, T. Perovskite oxide nanosheets with tunable band-edge potentials and high photocatalytic hydrogen-evolution activity. Angew. Chem., Int. Ed. 2014, 53, 13164–13168.
Ida, S.; Takashiba, A.; Koga, S.; Hagiwara, H.; Ishihara, T. Potential gradient and photocatalytic activity of an ultrathin p-n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 2014, 136, 1872–1878.
Osada, M.; Sasaki, T. Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 2012, 24, 210–228.
Zhang, Y.; Li, S. Y.; Li, Z. L.; Liu, H.; Liu, X. Y.; Chen, J. X.; Fang, X. S. High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors. Nano Lett. 2021, 21, 382–388.
Liu, X. Y.; Li, S. Y.; Li, Z. Q.; Zhang, Y.; Yang, W.; Li, Z. L.; Liu, H.; Shtansky, D. V.; Fang, X. S. Boosted responsivity and tunable spectral response in B-site substituted 2D Ca2Nb3− x Ta x O10 perovskite photodetectors. Adv. Funct. Mater. 2021, 31, 2101480.
Zhang, G.; Liu, G.; Wang, L. Z.; Irvine, J. T. S. Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 2016, 45, 5951–5984.
Sun, Y.; Liu, Z. Y.; Zhang, W.; Chu, X. F.; Cong, Y. G.; Huang, K. K.; Feng, S. H. Unfolding B–O–B bonds for an enhanced ORR performance in ABO3-type perovskites. Small 2019, 15, 1803513.
Zhao, Q.; Zhu, D.; Zhou, X.; Li, S. H.; Sun, X. Y.; Cui, J.; Fan, Z.; Guo, M. J.; Zhao, J.; Teng, B. T. et al. Conductive one-dimensional coordination polymers with tunable selectivity for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 52960–52966.
Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427.
Li, Z. Q.; Chen, Y.; Zhu, P. F.; Ji, N. J.; Duan, X. L.; Jiang, H. D. Electronic structure and properties of RbTiOPO4: Ta crystals. RSC Adv. 2017, 7, 53111–53116.
Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol. C: Photochem. Rev. 2011, 12, 237–268.
Xu, P. T.; Milstein, T. J.; Mallouk, T. E. Flat-band potentials of molecularly thin metal oxide nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11539–11547.
Okamoto, Y.; Ida, S.; Hyodo, J.; Hagiwara, H.; Ishihara, T. Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading. J. Am. Chem. Soc. 2011, 133, 18034–18037.
Li, M. R.; Zhao, M. W.; Li, F.; Zhou, W.; Peterson, V. K.; Xu, X. Y.; Shao, Z. P.; Gentle, I.; Zhu, Z. H. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nat. Commun. 2017, 8, 13990.
Zhao, B. T.; Zhang, L.; Zhen, D. X.; Yoo, S.; Ding, Y.; Chen, D. C.; Chen, Y.; Zhang, Q. B.; Doyle, B.; Xiong, X. H. et al. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat. Commun. 2017, 8, 14586.
Qian, J. N.; Liu, W.; Jiang, Y. T.; Mu, Y. B.; Cai, Y. Y.; Shi, L.; Zeng, L. Enhanced catalytic performance in two-electron oxygen reduction reaction via ZnSnO3 perovskite. ACS Sustain. Chem. Eng. 2022, 10, 14351–14360.
Han, L.; Sun, Y. Y.; Li, S.; Cheng, C.; Halbig, C. E.; Feicht, P.; Hübner, J. L.; Strasser, P.; Eigler, S. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 2019, 9, 1283–1288.
Jiang, H.; Wang, Y. A.; Hu, J.; Shai, X.; Zhang, C. X.; Le, T.; Zhang, L. B.; Shao, M. H. Phase regulation of WO3 for highly selective oxygen reduction to hydrogen peroxide. Chem. Eng. J. 2023, 452, 139449.
Wang, N.; Zhao, X. H.; Zhang, R.; Yu, S.; Levell, Z. H.; Wang, C. Y.; Ma, S. B.; Zou, P. C.; Han, L. L.; Qin, J. Y. et al. Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst. ACS Catal. 2022, 12, 4156–4164.
Chakthranont, P.; Nitrathorn, S.; Thongratkaew, S.; Khemthong, P.; Nakajima, H.; Supruangnet, R.; Butburee, T.; Sano, N.; Faungnawakij, K. Rational design of metal-free doped carbon nanohorn catalysts for efficient electrosynthesis of H2O2 from O2 reduction. ACS Appl. Energy Mater. 2021, 4, 12436–12447.
Fan, M. M.; Wang, Z. M.; Sun, K.; Wang, A.; Zhao, Y. Y.; Yuan, Q. X.; Wang, R. B.; Raj, J.; Wu, J. J.; Jiang, J. C. et al. N-B-OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Adv. Mater. 2023, 35, 2209086.
Zhang, C. Q.; Lu, R. H.; Liu, C.; Lu, J. Y.; Zou, Y. Y.; Yuan, L.; Wang, J.; Wang, G. Z.; Zhao, Y.; Yu, C. Z. Trimetallic sulfide hollow superstructures with engineered d-band center for oxygen reduction to hydrogen peroxide in alkaline solution. Adv. Sci. 2022, 9, 2104768.
Zhang, F. F.; Zhu, Y. L.; Tang, C.; Chen, Y.; Qian, B. B.; Hu, Z. W.; Chang, Y. C.; Pao, C. W.; Lin, Q.; Kazemi, S. A. et al. High-efficiency electrosynthesis of hydrogen peroxide from oxygen reduction enabled by a tungsten single atom catalyst with unique terdentate N1O2 coordination. Adv. Funct. Mater. 2022, 32, 2110224.