AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control

Yongpan GuYike Li( )Haoqiang FengYanan HanZhongjun Li( )
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

An S-doped g-C3N4/g-C3N4 (SCN-tm/CN) S-scheme homojunction was designed by rationally integrating morphology control with interfacial engineering, and showed enhanced photocatalytic hydrogen evolution performance.

Abstract

S-scheme possesses superior redox capabilities compared with the II-scheme, providing an effective method to solve the innate defects of g-C3N4 (CN). In this study, S-doped g-C3N4/g-C3N4 (SCN-tm/CN) S-scheme homojunction was constructed by rationally integrating morphology control with interfacial engineering to enhance the photocatalytic hydrogen evolution performance. In-situ Kelvin probe force microscopy (KPFM) confirms the transport of photo-generated electrons from CN to SCN. Density functional theory (DFT) calculations reveal that the generation of a built-in electric field between SCN and CN enables the carrier separation to be more efficient and effective. Femtosecond transient absorption spectrum (fs-TAS) indicates prolonged lifetimes of SCN-tm/CN3 (τ1: 9.7, τ2: 110, and τ3: 1343.5 ps) in comparison to those of CN (τ1: 4.86, τ2: 55.2, and τ3: 927 ps), signifying that the construction of homojunction promotes the separation and transport of electron hole pairs, thus favoring the photocatalytic process. Under visible light irradiation, the optimized SCN-tm/CN3 exhibits excellent photocatalytic activity with the hydrogen evolution rate of 5407.3 μmol·g−1·h−1, which is 20.4 times higher than that of CN (265.7 μmol·g−1·h−1). Moreover, the homojunction also displays an apparent quantum efficiency of 26.8% at 435 nm as well as ultra-long and ultra-stable cycle ability. This work offers a new strategy to construct highly efficient photocatalysts based on the metal-free conjugated polymeric CN for realizing solar energy conversion.

Electronic Supplementary Material

Download File(s)
12274_2024_6501_MOESM1_ESM.pdf (886 KB)

References

[1]

Wang, Y.; Liu, X. Q.; Liu, J.; Han, B.; Hu, X. Q.; Yang, F.; Xu, Z. W.; Li, Y. C.; Jia, S. R.; Li, Z. et al. Carbon quantum dot implanted graphite carbon nitride nanotubes: Excellent charge separation and enhanced photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 5765–5771.

[2]

Wang, P. L.; Fan, S. Y.; Li, X. Y.; Wang, J.; Liu, Z. Y.; Niu, Z. D.; Tadé, M. O.; Liu, S. M. Single Pd atoms synergistically manipulating charge polarization and active sites for simultaneously photocatalytic hydrogen production and oxidation of benzylamine. Nano Energy 2022, 95, 107045.

[3]

Thangavel, N.; Pandi, K.; Shaheer, A. R. M.; Neppolian, B. Surface-state-induced upward band bending in P doped g-C3N4 for the formation of an isotype heterojunction between bulk g-C3N4 and P doped g-C3N4: Photocatalytic hydrogen production. Catal. Sci. Technol. 2020, 10, 8015–8025.

[4]

Xia, B. Q.; He, B. W.; Zhang, J. J.; Li, L. Q.; Zhang, Y. Z.; Yu, J. G.; Ran, J. R.; Qiao, S. Z. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2201449.

[5]

Li, S. S.; Peng, Y. N.; Hu, C.; Chen, Z. H. Self-assembled synthesis of benzene-ring-grafted g-C3N4 nanotubes for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 2020, 279, 119401.

[6]

Rajput, Y.; Kumar, P.; Zhang, T. C.; Kumar, D.; Nemiwal, M. Recent advances in g-C3N4-based photocatalysts for hydrogen evolution reactions. Int. J. Hydrogen Energy 2022, 47, 38533–38555.

[7]

Wang, J. L.; Wang, S. Z. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coord. Chem. Rev. 2022, 453, 214338.

[8]

Jiang, L. B.; Yuan, X. Z.; Zeng, G. M.; Liang, J.; Wu, Z. B.; Wang, H.; Zhang, J.; Xiong, T.; Li, H. A facile band alignment of polymeric carbon nitride isotype heterojunctions for enhanced photocatalytic tetracycline degradation. Environ. Sci. Nano 2018, 5, 2604–2617.

[9]

Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401.

[10]

Zhang, M. J.; Zhang, Y.; Zhu, Y.; Wang, J. J.; Qiao, L.; Zhao, Y.; Tao, Y. N.; Xiao, Y.; Tang, L. Insights into adsorption and high photocatalytic oxidation of ciprofloxacin under visible light by intra-molecular Donor-Acceptor like p-n isotype heterojunction: Performance and mechanism. Chem. Eng. J. 2023, 464, 142533.

[11]

Che, W.; Cheng, W. R.; Yao, T.; Tang, F. M.; Liu, W.; Su, H.; Huang, Y. Y.; Liu, Q. H.; Liu, J. K.; Hu, F. C. et al. Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 2017, 139, 3021–3026.

[12]

Gao, H. L.; Guo, Y.; Yu, Z. W.; Zhao, M. M.; Hou, Y.; Zhu, Z. Q.; Yan, S. C.; Liu, Q. J.; Zou, Z. G. Incorporating p-phenylene as an electron-donating group into graphitic carbon nitride for efficient charge separation. ChemSusChem 2019, 12, 4285–4292.

[13]

Zhang, Y. Z.; Chen, Z. W.; Li, J. L.; Lu, Z. Y.; Wang, X. Self-assembled synthesis of oxygen-doped g-C3N4 nanotubes in enhancement of visible-light photocatalytic hydrogen. J. Energy Chem. 2021, 54, 36–44.

[14]

Wang, N.; Wang, J.; Hu, J. H.; Lu, X. Q.; Sun, J.; Shi, F.; Liu, Z. H.; Lei, Z. B.; Jiang, R. B. Design of palladium-doped g-C3N4 for enhanced photocatalytic activity toward hydrogen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 2866–2873.

[15]
Wang, X. W.; Li, Q. C.; Gan, L.; Ji, X. F.; Chen, F. Y.; Peng, X. K.; Zhang, R. B. 3D macropore carbon-vacancy g-C3N4 constructed using polymethylmethacrylate spheres for enhanced photocatalytic H2 evolution and CO2 reduction. J. Energy Chem. 2021 , 53, 139–146.
[16]

Huang, Y. B.; Liu, J.; Zhao, C.; Jia, X. H.; Ma, M. M.; Qian, Y. Y.; Yang, C.; Liu, K.; Tan, F. R.; Wang, Z. J. et al. Facile synthesis of defect-modified thin-layered and porous g-C3N4 with synergetic improvement for photocatalytic H2 production. ACS Appl. Mater. Interfaces 2020, 12, 52603–52614.

[17]

Chen, S. B.; Ng, Y. H.; Liao, J. H.; Gao, Q. Z.; Yang, S. Y.; Peng, F.; Zhong, X. H.; Fang, Y. P.; Zhang, S. S. FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer. J. Energy Chem. 2021, 52, 92–101.

[18]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[19]
Zhou, M. J.; Hou, Z. H.; Zhang, L.; Liu, Y.; Gao, Q. Z.; Chen, X. B. n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation. Sustainable Energy Fuels 2017 , 1, 317–323.
[20]

Yang, Y.; Yang, F.; Li, Z.; Zhang, N.; Hao, S. Z-scheme g-C3N4/C/S-g-C3N4 heterostructural nanotube with enhanced porous structure and visible light driven photocatalysis. Microporous Mesoporous Mater. 2021, 314, 110891.

[21]

Deng, Y. C.; Li, L.; Zeng, H.; Tang, R. D.; Zhou, Z. P.; Sun, Y. C.; Feng, C. Y.; Gong, D. X.; Wang, J. J.; Huang, Y. Unveiling the origin of high-efficiency charge transport effect of C3N5/C3N4 homojunction for activating peroxymonosulfate to degrade atrazine under visible light. Chem. Eng. J. 2023, 457, 141261.

[22]

Sudhaik, A.; Sonu; Hasija, V.; Selvasembian, R.; Ahamad, T.; Singh, A.; Khan, A. A. P.; Raizada, P.; Singh, P. Applications of graphitic carbon nitride-based S-scheme heterojunctions for environmental remediation and energy conversion. Nanofabrication. 2023, 8, 1–37.

[23]

Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.

[24]

Wu, X. H.; Chen, G. Q.; Wang, J.; Li, J. M.; Wang, G. H. Review on S-scheme heterojunctions for photocatalytic hydrogen evolution. Acta Phys. Chim. Sin. 2023, 39, 2212016.

[25]

Ruan, X. W.; Huang, C. X.; Cheng, H.; Zhang, Z. Q.; Cui, Y.; Li, Z. Y.; Xie, T. F.; Ba, K. K.; Zhang, H. Y.; Zhang, L. et al. A twin S-scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Adv. Mater. 2023, 35, 2209141.

[26]

Zhao, C.; Zheng, M.; Wang, D.; Li, Q.; Jiang, B. J. Enhanced charge separation and transfer of Fe2O3@nitrogen-rich carbon nitride tubes for photocatalytic water splitting. Energy Technol. 2020, 8, 2000108.

[27]

Zhao, Y.; Shi, H. X.; Yang, D. Y.; Fan, J.; Hu, X. Y.; Liu, E. Z. Fabrication of a Sb2MoO6/g-C3N4 Photocatalyst for Enhanced RhB Degradation and H2 Generation. J. Phys. Chem. C. 2020, 124, 13771–13778.

[28]

Kong, C.; Zhang, F. J.; Sun, X. Y.; Kai, C.; Cai, W. Q. In-situ grown rod-shaped Ni(OH)2 between interlayer of g-C3N4 for hydrogen evolution under visible light. Inorg. Chem. Commun. 2020, 122, 108264.

[29]

Zhang, B.; Shi, H. X.; Yan, Y. J.; Liu, C. Q.; Hu, X. Y.; Liu, E. Z.; Fan, J. A novel S-scheme 1D/2D Bi2S3/g-C3N4 heterojunctions with enhanced H2 evolution activity. Colloids Surf. A Physicochem. Eng Asp. 2021, 608, 125598.

[30]

Tong, Z. W.; Yang, D.; Sun, Y. Y.; Nan, Y. H.; Jiang, Z. Y. Tubular g-C3N4 isotype heterojunction: Enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer. Small 2016, 12, 4093–4101.

[31]

Sun, S. D.; Li, J.; Song, P.; Cui, J.; Yang, Q.; Zheng, X.; Yang, Z. M.; Liang, S. H. Facile constructing of isotype g-C3N4(bulk)/g-C3N4(nanosheet) heterojunctions through thermal polymerization of single-source glucose-modified melamine: An efficient charge separation system for photocatalytic hydrogen production. Appl. Surf. Sci. 2020, 500, 143985.

[32]

Guan, X. J.; Zong, S. C.; Shen, S. H. Homojunction photocatalysts for water splitting. Nano Res. 2022, 15, 10171–10184.

[33]

Fang, X.; Chen, L.; Cheng, H. R.; Bian, X. Q.; Sun, W. H.; Ding, K. N.; Xia, X. H.; Chen, X.; Zhu, J. F.; Zheng, Y. H. Homojunction and ohmic contact coexisting carbon nitride for efficient photocatalytic hydrogen evolution. Nano Res. 2023, 16, 8782–8792.

[34]

Wu, M.; Zhang, J.; He, B. B.; Wang, H. W.; Wang, R.; Gong, Y. S. In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 241, 159–166.

[35]

Chen, Z. H.; Guo, F.; Sun, H. R.; Shi, Y. X.; Shi, W. L. Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 607, 1391–1401.

[36]

Gu, Y. P.; Sun, L. X.; Feng, H. Q.; Li, Y. K.; Li, Z. J. Novel up-conversion N, S co-doped carbon dots/g-C3N4 photocatalyst for enhanced photocatalytic hydrogen evolution under visible and near-infrared light. Int. J. Hydrogen Energy 2023, 48, 5976–5987.

[37]

Gu, Y. P.; Feng, H. Q.; Zhao, J. D.; Cui, M. L.; Li, Y. K.; Li, Z. J. Rational construction of edge-grafted g-C3N4 via cross-linking aromatic compounds with C-F bonds for efficient photocatalytic H2 evolution. Chem. Eng. J. 2023, 476, 146555.

[38]

Qin, J. C.; Jiao, Y. Y.; Liu, M. Q.; Li, Y. K.; Wang, J. S. Heat treatment to prepare boron doped g-C3N4 nanodots/carbon-rich g-C3N4 nanosheets heterojunction with enhanced photocatalytic performance for water splitting hydrogen evolution. J. Alloys Compd. 2022, 898, 162846.

[39]

Wu, T.; Liu, Z. F.; Shao, B. B.; Liang, Q. H.; He, Q. Y.; Pan, Y.; Zhang, X. S.; Liu, Y.; Sun, J. W.; Gong, S. X. Hydrogen peroxide-impregnated supramolecular precursors synthesize mesoporous-rich ant nest-like filled tubular g-C3N4 for effective photocatalytic removal of pollutants. Chem. Eng. J. 2022, 447, 137332.

[40]

Babu, P.; Mohanty, S.; Naik, B.; Parida, K. Synergistic effects of boron and sulfur Co-doping into graphitic carbon nitride framework for enhanced photocatalytic activity in visible light driven hydrogen generation. ACS Appl. Energy Mater. 2018, 1, 5936–5947.

[41]

Wagner, C. D.; Davis, L. E.; Zeller, M. V.; Taylor, J. A.; Raymond, R. H.; Gale, L. H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 1981, 3, 211–225.

[42]

Yan, J.; Wang, T.; Qiu, S. Y.; Song, Z. L.; Zhu, W. Q.; Liu, X. H.; Lian, J. B.; Sun, C. H.; Li, H. M. Insights into the efficient charge separation over Nb2O5/2D-C3N4 heterostructure for exceptional visible-light driven H2 evolution. J. Energy Chem. 2022, 65, 548–555.

[43]

Chen, X. G.; Chu, B. B.; Gu, Q. H.; Liu, H.; Li, C.; Li, W. Z.; Lu, J.; Wu, D. H. Facile fabrication of protonated g-C3N4/oxygen-doped g-C3N4 homojunction with enhanced visible photocatalytic degradation performance of deoxynivalenol. J. Environ. Chem. Eng. 2021, 9, 106380.

[44]

Chen, P.; Meng, L. H.; Chen, L.; Guo, J. K.; Shen, S.; Au, C. T.; Yin, S. F. Double-shell and flower-like ZnS-C3N4 derived from in situ supramolecular self-assembly for selective aerobic oxidation of amines to imines. ACS Sustainable Chem. Eng. 2019, 7, 14203–14209.

[45]

Sun, X. H.; Sun, L.; Li, G. N.; Tuo, Y.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors thed-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed. 2022, 61, e202207677.

[46]

Li, L. J.; Xu, J.; Zhao, S.; Mao, M.; Li, X. H. Construction of p-n type heterojunction for effective photo-generated electron separation and visible light hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 1934–1944.

[47]

Zhao, X.; Liu, M. J.; Wang, Y. C.; Xiong, Y.; Yang, P. Y.; Qin, J. Q.; Xiong, X.; Lei, Y. P. Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 2022, 16, 19959–19979.

[48]

Zhang, J. J.; Yang, G. Y.; He, B. W.; Cheng, B.; Li, Y. J.; Liang, G. J.; Wang, L. X. Electron transfer kinetics in CdS/Pt heterojunction photocatalyst during water splitting. Chin, J. Catal. 2022, 43, 2530–2538.

[49]

Qiu, B. C.; Cai, L. J.; Zhang, N.; Tao, X. M.; Chai, Y. A ternary dumbbell structure with spatially separated catalytic sites for photocatalytic overall water splitting. Adv. Sci. 2020, 7, 1903568.

[50]

Xu, T. T.; Xia, Z. H.; Li, H. G.; Niu, P.; Wang, S. L.; Li, L. Constructing crystalline g-C3N4/g-C3N4- x S x isotype heterostructure for efficient photocatalytic and piezocatalytic performances. Energy Environ. Mater. 2023, 6, e12306.

[51]

Wang, H. Y.; Niu, R. R.; Liu, J. H.; Guo, S.; Yang, Y. P.; Liu, Z. Y.; Li, J. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p—n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Res. 2022, 15, 6987–6998.

[52]

Su, H.; Lou, H. M.; Zhao, Z. P.; Zhou, L.; Pang, Y. X.; Xie, H. J.; Rao, C.; Yang, D. J.; Qiu, X. Q. In-situ Mo doped ZnIn2S4 wrapped MoO3 S-scheme heterojunction via Mo-S bonds to enhance photocatalytic HER. Chem. Eng. J. 2022, 430, 132770.

[53]

Wang, J.; Pan, R. H.; Yan, S. Y.; Wang, R.; Niu, X. Y.; Hao, Q.; Ye, J. L.; Wu, Y. P.; Yang, H. Y. Construction of 1D/2D core-shell structured K6Nb10.8O30@Zn2In2S5 as S-scheme photocatalysts for cocatalyst-free hydrogen production. Chem. Eng. J. 2023, 463, 142489.

[54]

Hu, J. D.; Chen, C.; Hu, T.; Li, J. S.; Lu, H.; Zheng, Y.; Yang, X. G.; Guo, C. X.; Li, C. M. Metal-free heterojunction of black phosphorus/oxygen-enriched porous g-C3N4 as an efficient photocatalyst for Fenton-like cascade water purification. J. Mater. Chem. A 2020, 8, 19484–19492.

[55]

Wang, X. H.; Wang, X. H.; Tian, W. L.; Meng, A. L.; Li, Z. J.; Li, S. X.; Wang, L.; Li, G. C. High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 2022, 303, 120933.

[56]

Liang, Q. H.; Liu, X. J.; Wang, J. J.; Liu, Y.; Liu, Z. F.; Tang, L.; Shao, B. B.; Zhang, W.; Gong, S. X.; Cheng, M. et al. In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis: Experiments and theories. J. Hazard. Mater. 2021, 401, 123355.

[57]

Shi, Y. X.; Li, L. L.; Xu, Z.; Guo, F.; Shi, W. L. Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production. Chem. Eng. J. 2023, 459, 141549.

[58]

Ren, H. T.; Qi, F.; Labidi, A.; Zhao, J. J.; Wang, H.; Xin, Y.; Luo, J. M.; Wang, C. Y. Chemically bonded carbon quantum dots/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic degradation: Interfacial engineering and mechanism insight. Appl. Catal. B Environ. 2023, 330, 122587.

Nano Research
Pages 4961-4970
Cite this article:
Gu Y, Li Y, Feng H, et al. Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control. Nano Research, 2024, 17(6): 4961-4970. https://doi.org/10.1007/s12274-024-6501-0
Topics:

631

Views

5

Crossref

4

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 17 November 2023
Revised: 18 January 2024
Accepted: 19 January 2024
Published: 05 March 2024
© Tsinghua University Press 2024
Return