AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Single quantum dot spectroscopy for exciton dynamics

Bin Li1Guofeng Zhang2( )Yuke Gao1Xiaopeng chen1Ruiyun Chen2Chengbing Qin2Jianyong Hu2Ruixiang Wu1Liantuan Xiao2( )Suotang Jia2
Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Show Author Information

Graphical Abstract

This paper reviews recent progress in exciton dynamics revealed by single-quantum dot (QD) spectroscopy, focusing on the exciton and biexciton dynamics of single colloidal CdSe-based QDs and perovskite QDs.

Abstract

Colloidal semiconductor quantum dots (QDs) exhibit broadband light absorption, continuously tunable narrowband emission, and high photoluminescence quantum yields. As such, they represent promising materials for use in light-emitting diodes, solar cells, detectors, and lasers. Single-QD spectroscopy can remove the ensemble averaging to reveal the diverse optical properties and exciton dynamics of QD materials at the single-particle level. The results of relevant research can serve as guidelines for materials science community in tailoring the synthesis of QDs to develop novel applications. This paper reviews recent progress in exciton dynamics revealed by single-QD spectroscopy, focusing on the exciton and multi-exciton dynamics of single colloidal CdSe-based QDs and perovskite QDs. Finally, potential future directions for single-QD spectroscopy and exciton dynamics are briefly considered.

References

[1]

Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

[2]

Efros, A. L.; Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671.

[3]

García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[4]

Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.

[5]

Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.

[6]

Lin, Y. H.; Sakai, N.; Da, P. M.; Wu, J. Y.; Sansom, H. C.; Ramadan, A. J.; Mahesh, S.; Liu, J. L.; Oliver, R. D. J.; Lim, J. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 2020, 369, 96–102.

[7]

Bao, J.; Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 2015, 523, 67–70.

[8]

Liu, L. G.; Deng, L. G.; Huang, S.; Zhang, P.; Linnros, J.; Zhong, H. Z.; Sychugov, I. Photodegradation of organometal hybrid perovskite nanocrystals: Clarifying the role of oxygen by single-dot photoluminescence. J. Phys. Chem. Lett. 2019, 10, 864–869.

[9]

Krieg, F.; Ong, Q. K.; Burian, M.; Rainò, G.; Naumenko, D.; Amenitsch, H.; Süess, A.; Grotevent, M. J.; Krumeich, F.; Bodnarchuk, M. I. et al. Stable ultraconcentrated and ultradilute colloids of CsPbX3 (X = Cl, Br) nanocrystals using natural lecithin as a capping ligand. J. Am. Chem. Soc. 2019, 141, 19839–19849.

[10]

Kaur, G.; Babu, K. J.; Ghorai, N.; Goswami, T.; Maiti, S.; Ghosh, H. N. Polaron-mediated slow carrier cooling in a type-1 3D/0D CsPbBr3@Cs4PbBr6 core–shell perovskite system. J. Phys. Chem. Lett. 2019, 10, 5302–5311.

[11]

Wu, R. X.; Luo, J. J.; Guo, X. J.; Wang, X. S.; Ma, Z. H.; Li, B.; Cheng, L. Y.; Miao, X. Y. Phosphorescence quenching study of Cu(II)-ions-induced Mn-doped ZnS quantum dots revealed by intensity- and lifetime-resolved spectroscopy. Chem. Phys. Lett. 2021, 781, 138960.

[12]

Fan, Q. X.; Yan, Z.; Zhou, H.; Yao, Y. G.; Wang, Z. K.; Gao, Y. N.; Wang, Y. L.; Lu, S. B.; Liu, M.; Ji, W. Near-infrared multiphoton absorption and third harmonic generation with CsPbBr3 quantum dots embedded in micro-particles of metal-organic frameworks. J. Mater. Chem. C 2023, 11, 5788–5795.

[13]

Zhou, J. J.; Chizhik, A. I.; Chu, S.; Jin, D. Y. Single-particle spectroscopy for functional nanomaterials. Nature 2020, 579, 41–50.

[14]

Bai, X. Q.; Li, H. Y.; Peng, Y. G.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Han, X.; Li, J. L.; Chen, R. Y.; Qin, C. B. et al. Role of aspect ratio in the photoluminescence of single CdSe/CdS dot-in-rods. J. Phys. Chem. C 2022, 126, 2699–2707.

[15]

Liang, X. L.; Qin, C. B.; Qiao, Z. X.; Kang, W. H.; Yin, H. L.; Dong, S.; Li, X. D.; Wang, S.; Su, X. L.; Zhang, G. F. et al. Optical interference effect in the hybrid quantum dots/two-dimensional materials: Photoluminescence enhancement and modulation. Opt. Express 2022, 30, 26557–26569.

[16]

Zhang, G. F.; Yang, C. G.; Ge, Y.; Peng, Y. G.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Zhang, L.; Zhong, H. Z.; Zheng, Y. J. et al. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods. Front. Phys. 2019, 14, 63601.

[17]

Rabouw, F. T.; de Mello Donega, C. Excited-state dynamics in colloidal semiconductor nanocrystals. Top. Curr. Chem. 2016, 374, 58.

[18]

Yao, Y. G.; Zhu, Y. K.; Hu, A.; Gao, Y. N. Temperature-regulated in-plane exciton dynamics in CdSe/CdSeS colloidal quantum well heterostructures. ACS Photonics 2023, 10, 4052–4060.

[19]

Hu, F. R.; Lv, B. H.; Yin, C. Y.; Zhang, C. F.; Wang, X. Y.; Lounis, B.; Xiao, M. Carrier multiplication in a single semiconductor nanocrystal. Phys. Rev. Lett. 2016, 116, 106404.

[20]

Ihara, T. Biexciton cascade emission reveals absolute absorption cross section of single semiconductor nanocrystals. Phys. Rev. B 2016, 93, 235442.

[21]

Senellart, P.; Solomon, G.; White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026–1039.

[22]

Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys. 2014, 5, 285–316.

[23]

Schimpf, C.; Reindl, M.; Huber, D.; Lehner, B.; Covre Da Silva, S. F.; Manna, S.; Vyvlecka, M.; Walther, P.; Rastelli, A. Quantum cryptography with highly entangled photons from semiconductor quantum dots. Sci. Adv. 2021, 7, eabe8905.

[24]

Cui, J.; Beyler, A. P.; Bischof, T. S.; Wilson, M. W. B.; Bawendi, M. G. Deconstructing the photon stream from single nanocrystals: From binning to correlation. Chem. Soc. Rev. 2014, 43, 1287–1310.

[25]

Efros, A. L.; Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 1997, 78, 1110–1113.

[26]

Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 1996, 383, 802–804.

[27]

Han, S. P.; Qin, C. B.; Song, Y. R.; Dong, S.; Lei, Y.; Wang, S.; Su, X. L.; Wei, A. N.; Li, X. D.; Zhang, G. F. et al. Photostable fluorescent molecules on layered hexagonal boron nitride: Ideal single-photon sources at room temperature. J. Chem. Phys. 2021, 155, 244301.

[28]

Li, B.; Zhang, G. F.; Chen, R. Y.; Qin, C. B.; Hu, J. Y.; Xiao, L. T.; Jia, S. T. Research progress of single quantum-dot spectroscopy and exciton dynamics. Acta Phys. Sin. 2022, 71, 067802.

[29]

Chen, R. Y.; Xia, B.; Zhou, W. J.; Zhang, G. F.; Qin, C. B.; Hu, J. Y.; Scheblykin, I. G.; Xiao, L. T. Environment-dependent metastable nonradiative recombination centers in perovskites revealed by photoluminescence blinking. Adv. Photonics Res. 2022, 3, 2100271.

[30]

Nazir, Z.; Lun, Y.; Li, J. L.; Yang, G. L.; Liu, M. R.; Li, S. Q.; Tang, G.; Zhang, G. F.; Hong, J. W.; Xiao, L. T. et al. Breaking the symmetry of colloidal 2D nanoplatelets: Twist induced quantum coupling. Nano Res. 2023, 16, 10522–10529.

[31]

Chen, R. Y.; Xia, B.; Zhou, W. J.; Guan, W. L.; Zhang, G. F.; Qin, C. B.; Hu, J. Y.; Xiao, L. T.; Jia, S. T. Underestimated effect of the polymer encapsulation process on the photoluminescence of perovskite revealed by in situ single-particle detection. Opt. Express 2021, 29, 1851–1869.

[32]

Brokmann, X.; Coolen, L.; Dahan, M.; Hermier, J. P. Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys. Rev. Lett. 2004, 93, 107403.

[33]

Meng, R. Y.; Qin, H. Y.; Niu, Y.; Fang, W.; Yang, S.; Lin, X.; Cao, H. J.; Ma, J. L.; Lin, W. Z.; Tong, L. M. et al. Charging and discharging channels in photoluminescence intermittency of single colloidal CdSe/CdS core/shell quantum dot. J. Phys. Chem. Lett. 2016, 7, 5176–5182.

[34]

Qin, H. Y.; Meng, R. Y.; Wang, N.; Peng, X. G. Photoluminescence intermittency and photo-bleaching of single colloidal quantum dot. Adv. Mater. 2017, 29, 1606923.

[35]

Yang, C. G.; Xiao, R. L.; Zhou, S. R.; Yang, Y. G.; Zhang, G. F.; Li, B.; Guo, W. L.; Han, X.; Wang, D. H.; Bai, X. Q. et al. Efficient, stable, and photoluminescence intermittency-free CdSe-based quantum dots in the full-color range. ACS Photonics 2021, 8, 2538–2547.

[36]

Park, Y. S.; Bae, W. K.; Pietryga, J. M.; Klimov, V. I. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. ACS Nano 2014, 8, 7288–7296.

[37]

Hou, X. Q.; Kang, J.; Qin, H. Y.; Chen, X. W.; Ma, J. L.; Zhou, J. H.; Chen, L. P.; Wang, L. J.; Wang, L. W.; Peng, X. G. Engineering Auger recombination in colloidal quantum dots via dielectric screening. Nat. Commun. 2019, 10, 1750.

[38]

Hou, X. Q.; Qin, H. Y.; Peng, X. G. Enhancing dielectric screening for Auger suppression in CdSe/CdS quantum dots by epitaxial growth of ZnS shell. Nano Lett. 2021, 21, 3871–3878.

[39]

Park, Y. S.; Guo, S. J.; Makarov, N. S.; Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 2015, 9, 10386–10393.

[40]

Yarita, N.; Tahara, H.; Ihara, T.; Kawawaki, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Dynamics of charged excitons and biexcitons in CsPbBr3 perovskite nanocrystals revealed by femtosecond transient-absorption and single-dot luminescence spectroscopy. J. Phys. Chem. Lett. 2017, 8, 1413–1418.

[41]

Becker, M. A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P. C.; Shabaev, A.; Mehl, M. J.; Michopoulos, J. G.; Lambrakos, S. G.; Bernstein, N.; Lyons, J. L. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189–193.

[42]

Yin, C. Y.; Chen, L. Y.; Song, N.; Lv, Y.; Hu, F. R.; Sun, C.; Yu, W. W.; Zhang, C. F.; Wang, X. Y.; Zhang, Y. et al. Bright-exciton fine-structure splittings in single perovskite nanocrystals. Phys. Rev. Lett. 2017, 119, 026401.

[43]

Lei, H. X.; Liu, S. J.; Li, J. Z.; Li, C. Y.; Qin, H. Y.; Peng, X. G. Band-edge energy levels of dynamic excitons in cube-shaped CdSe/CdS core/shell nanocrystals. ACS Nano 2023, 17, 21962–21972.

[44]

Li, J. L.; Wang, D. F.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Han, X.; Bai, X. Q.; Chen, R. Y.; Qin, C. B.; Hu, J. Y. et al. The role of surface charges in the blinking mechanisms and quantum-confined stark effect of single colloidal quantum dots. Nano Res. 2022, 15, 7655–7661.

[45]

Frantsuzov, P. A.; Volkán-Kacsó, S.; Jankó, B. Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers. Phys. Rev. Lett. 2009, 103, 207402.

[46]

Frantsuzov, P. A.; Marcus, R. A. Explanation of quantum dot blinking without the long-lived trap hypothesis. Phys. Rev. B 2005, 72, 155321.

[47]

Podshivaylov, E. A.; Kniazeva, M. A.; Tarasevich, A. O.; Eremchev, I. Y.; Naumov, A. V.; Frantsuzov, P. A. A quantitative model of multi-scale single quantum dot blinking. J. Mater. Chem. C 2023, 11, 8570–8576.

[48]

Yuan, G. C.; Gómez, D. E.; Kirkwood, N.; Boldt, K.; Mulvaney, P. Two mechanisms determine quantum dot blinking. ACS Nano 2018, 12, 3397–3405.

[49]

Galland, C.; Ghosh, Y.; Steinbrück, A.; Sykora, M.; Hollingsworth, J. A.; Klimov, V. I.; Htoon, H. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 2011, 479, 203–207.

[50]

Ahmed, T.; Seth, S.; Samanta, A. Mechanistic investigation of the defect activity contributing to the photoluminescence blinking of CsPbBr3 perovskite nanocrystals. ACS Nano 2019, 13, 13537–13544.

[51]

Osad’ko, I. S. Two types of the relation between the intensity and the life time of photoluminescence of core/shell semiconductor quantum dots: Important role of coulomb field and tunneling transitions. J. Chem. Phys. 2014, 141, 164312.

[52]

Trinh, C. T.; Minh, D. N.; Ahn, K. J.; Kang, Y.; Lee, K. G. Verification of type-A and type-B-HC blinking mechanisms of organic–inorganic formamidinium lead halide perovskite quantum dots by FLID measurements. Sci. Rep. 2020, 10, 2172.

[53]

Hu, F. R.; Yin, C. Y.; Zhang, H. C.; Sun, C.; Yu, W. W.; Zhang, C. F.; Wang, X. Y.; Zhang, Y.; Xiao, M. Slow Auger recombination of charged excitons in nonblinking perovskite nanocrystals without spectral diffusion. Nano Lett. 2016, 16, 6425–6430.

[54]

Ihara, T.; Kanemitsu, Y. Spectral diffusion of neutral and charged exciton transitions in single CdSe/ZnS nanocrystals due to quantum-confined stark effect. Phys. Rev. B 2014, 90, 195302.

[55]

Han, X.; Zhang, G. F.; Li, B.; Yang, C. G.; Guo, W. L.; Bai, X. Q.; Huang, P.; Chen, R. Y.; Qin, C. B.; Hu, J. Y. et al. Blinking mechanisms and intrinsic quantum-confined stark effect in single methylammonium lead bromide perovskite quantum dots. Small 2020, 16, 2005435.

[56]

Zhang, G. F.; Peng, Y. G.; Xie, H. Q.; Li, B.; Li, Z. J.; Yang, C. G.; Guo, W. L.; Qin, C. B.; Chen, R. Y.; Gao, Y. et al. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films. Front. Phys. 2019, 14, 23605.

[57]

Hiroshige, N.; Ihara, T.; Kanemitsu, Y. Simultaneously measured photoluminescence lifetime and quantum yield of two-photon cascade emission on single CdSe/ZnS nanocrystals. Phys. Rev. B 2017, 95, 245307.

[58]

Vaxenburg, R.; Rodina, A.; Lifshitz, E.; Efros, A. L. Biexciton Auger recombination in CdSe/CdS core/shell semiconductor nanocrystals. Nano Lett. 2016, 16, 2503–2511.

[59]

Lin, W. Z.; Niu, Y.; Meng, R. Y.; Huang, L.; Cao, H. J.; Zhang, Z. X.; Qin, H. Y.; Peng, X. G. Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands. Nano Res. 2016, 9, 260–271.

[60]

Yuan, G. C.; Ritchie, C.; Ritter, M.; Murphy, S.; Gómez, D. E.; Mulvaney, P. The degradation and blinking of single CsPbI3 perovskite quantum dots. J. Phys. Chem. C 2018, 122, 13407–13415.

[61]

Li, B.; Huang, H.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Biju, V. P.; Rogach, A. L. et al. Excitons and biexciton dynamics in single CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett. 2018, 9, 6934–6940.

[62]
Yang, C. G.; Li, Y.; Hou, X. Q.; Zhang, M.; Zhang, G. F.; Li, B.; Guo, W. L.; Han, X.; Bai, X. Q.; Li, J. L. et al. Conversion of photoluminescence blinking types in single colloidal quantum dots. Small, in press, https://doi.org/10.1002/smll.202309134.
[63]

Morozov, S.; Pensa, E. L.; Khan, A. H.; Polovitsyn, A.; Cortés, E.; Maier, S. A.; Vezzoli, S.; Moreels, I.; Sapienza, R. Electrical control of single-photon emission in highly charged individual colloidal quantum dots. Sci. Adv. 2020, 6, eabb1821.

[64]

LeBlanc, S. J.; McClanahan, M. R.; Moyer, T.; Jones, M.; Moyer, P. J. Fluorescence modulation in single CdSe quantum dots by moderate applied electric fields. J. Appl. Phys. 2014, 115, 034306.

[65]

Trinh, C. T.; Minh, D. N.; Nguyen, V. L.; Ahn, K. J.; Kang, Y.; Lee, K. G. An experimental study on the blinking suppression mechanism of organic-inorganic formamidinium lead halide perovskite quantum dots on N-type semiconductors. APL Mater. 2020, 8, 031102.

[66]

Li, B.; Zhang, G. F.; Wang, Z.; Li, Z. J.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Xiao, L. T.; Jia, S. T. Suppressing the fluorescence blinking of single quantum dots encased in N-type semiconductor nanoparticles. Sci. Rep. 2016, 6, 32662.

[67]

Sayevich, V.; Robinson, Z. L.; Kim, Y.; Kozlov, O. V.; Jung, H.; Nakotte, T.; Park, Y. S.; Klimov, V. I. Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. Nat. Nanotechnol. 2021, 16, 673–679.

[68]

Krishnamurthy, S.; Singh, A.; Hu, Z. J.; Blake, A. V.; Kim, Y.; Singh, A.; Dolgopolova, E. A.; Williams, D. J.; Piryatinski, A.; Malko, A. V. et al. PbS/CdS quantum dot room-temperature single-emitter spectroscopy reaches the telecom O and s bands via an engineered stability. ACS Nano 2021, 15, 575–587.

[69]

Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

[70]

Jain, A.; Voznyy, O.; Hoogland, S.; Korkusinski, M.; Hawrylak, P.; Sargent, E. H. Atomistic design of CdSe/CdS core–shell quantum dots with suppressed Auger recombination. Nano Lett. 2016, 16, 6491–6496.

[71]

Hou, X. Q.; Li, Y.; Qin, H. Y.; Peng, X. G. Effects of interface-potential smoothness and wavefunction delocalization on Auger recombination in colloidal CdSe-based core/shell quantum dots. J. Chem. Phys. 2019, 151, 234703.

[72]

Guo, W. L.; Tang, J. L.; Zhang, G. F.; Li, B.; Yang, C. G.; Chen, R. Y.; Qin, C. B.; Hu, J. Y.; Zhong, H. Z.; Xiao, L. T. et al. Photoluminescence blinking and biexciton Auger recombination in single colloidal quantum dots with sharp and smooth core/shell interfaces. J. Phys. Chem. Lett. 2021, 12, 405–412.

[73]

Hu, Z.; Liu, S. J.; Qin, H. Y.; Zhou, J. H.; Peng, X. G. Oxygen stabilizes photoluminescence of CdSe/CdS core/shell quantum dots via deionization. J. Am. Chem. Soc. 2020, 142, 4254–4264.

[74]

Yang, C. G.; Zhang, G. F.; Feng, L. H.; Li, B.; Li, Z. J.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Xiao, L. T.; Jia, S. T. Suppressing the photobleaching and photoluminescence intermittency of single near-infrared CdSeTe/ZnS quantum dots with p-Phenylenediamine. Opt. Express 2018, 26, 11889–11902.

[75]

Thomas, E. M.; Ghimire, S.; Kohara, R.; Anil, A. N.; Yuyama, K. I.; Takano, Y.; Thomas, K. G.; Biju, V. Blinking suppression in highly excited CdSe/ZnS quantum dots by electron transfer under large positive Gibbs (free) energy change. ACS Nano 2018, 12, 9060–9069.

[76]

Chouhan, L.; Ito, S.; Thomas, E. M.; Takano, Y.; Ghimire, S.; Miyasaka, H.; Biju, V. Real-time blinking suppression of perovskite quantum dots by halide vacancy filling. ACS Nano 2021, 15, 2831–2838.

[77]

Huang, X. N.; Xu, Q. F.; Zhang, C. F.; Wang, X. Y.; Xiao, M. Energy transfer of biexcitons in a single semiconductor nanocrystal. Nano Lett. 2016, 16, 2492–2496.

[78]

Nair, G.; Zhao, J.; Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 2011, 11, 1136–1140.

[79]

Paulite, M.; Acharya, K. P.; Nguyen, H. M.; Hollingsworth, J. A.; Htoon, H. Inverting asymmetric confinement potentials in core/thick-shell nanocrystals. J. Phys. Chem. Lett. 2015, 6, 706–711.

[80]

Xu, W. W.; Hou, X. Q.; Meng, Y. J.; Meng, R. Y.; Wang, Z. Y.; Qin, H. Y.; Peng, X. G.; Chen, X. W. Deciphering charging status, absolute quantum efficiency, and absorption cross section of multicarrier states in single colloidal quantum dots. Nano Lett. 2017, 17, 7487–7493.

[81]

Li, B.; Zhang, G. F.; Zhang, Y.; Yang, C. G.; Guo, W. L.; Peng, Y. G.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Hu, J. Y. et al. Biexciton dynamics in single colloidal CdSe quantum dots. J. Phys. Chem. Lett. 2020, 11, 10425–10432.

[82]

Cihan, A. F.; Martinez, P. L. H.; Kelestemur, Y.; Mutlugun, E.; Demir, H. V. Observation of biexcitons in nanocrystal solids in the presence of photocharging. ACS Nano 2013, 7, 4799–4809.

[83]

Vonk, S. J. W.; Heemskerk, B. A. J.; Keitel, R. C.; Hinterding, S. O. M.; Geuchies, J. J.; Houtepen, A. J.; Rabouw, F. T. Biexciton binding energy and line width of single quantum dots at room temperature. Nano Lett. 2021, 21, 5760–5766.

[84]

Lubin, G.; Tenne, R.; Ulku, A. C.; Antolovic, I. M.; Burri, S.; Karg, S.; Yallapragada, V. J.; Bruschini, C.; Charbon, E.; Oron, D. Heralded spectroscopy reveals exciton–exciton correlations in single colloidal quantum dots. Nano Lett. 2021, 21, 6756–6763.

[85]

Li, Z. J.; Zhang, G. F.; Li, B.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Xiao, L. T.; Jia, S. T. Enhanced biexciton emission from single quantum dots encased in N-type semiconductor nanoparticles. Appl. Phys. Lett. 2017, 111, 153106.

[86]

Krivenkov, V.; Goncharov, S.; Samokhvalov, P.; Sánchez-Iglesias, A.; Grzelczak, M.; Nabiev, I.; Rakovich, Y. Enhancement of biexciton emission due to long-range interaction of single quantum dots and gold nanorods in a thin-film hybrid nanostructure. J. Phys. Chem. Lett. 2019, 10, 481–486.

[87]

Masuo, S.; Kanetaka, K.; Sato, R.; Teranishi, T. Direct observation of multiphoton emission enhancement from a single quantum dot using AFM manipulation of a cubic gold nanoparticle. ACS Photonics 2016, 3, 109–116.

[88]

Naiki, H.; Oikawa, H.; Masuo, S. Modification of emission photon statistics from single quantum dots using metal/SiO2 core/shell nanostructures. Photochem. Photobiol. Sci. 2017, 16, 489–498.

[89]

Hiroshige, N.; Ihara, T.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Coulomb-enhanced radiative recombination of biexcitons in single giant-shell CdSe/CdS core/shell nanocrystals. J. Phys. Chem. Lett. 2017, 8, 1961–1966.

[90]

Rabouw, F. T.; Vaxenburg, R.; Bakulin, A. A.; van Dijk-Moes, R. J. A.; Bakker, H. J.; Rodina, A.; Lifshitz, E.; Efros, A. L.; Koenderink, A. F.; Vanmaekelbergh, D. Dynamics of intraband and interband Auger processes in colloidal core–shell quantum dots. ACS Nano 2015, 9, 10366–10376.

[91]

Ma, X. D.; Diroll, B. T.; Cho, W.; Fedin, I.; Schaller, R. D.; Talapin, D. V.; Gray, S. K.; Wiederrecht, G. P.; Gosztola, D. J. Size-dependent biexciton quantum yields and carrier dynamics of quasi-two-dimensional core/shell nanoplatelets. ACS Nano 2017, 11, 9119–9127.

[92]

Mangum, B. D.; Sampat, S.; Ghosh, Y.; Hollingsworth, J. A.; Htoon, H.; Malko, A. V. Influence of the core size on biexciton quantum yield of giant CdSe/CdS nanocrystals. Nanoscale 2014, 6, 3712–3720.

[93]

Park, Y. S.; Bae, W. K.; Padilha, L. A.; Pietryga, J. M.; Klimov, V. I. Effect of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy. Nano Lett. 2014, 14, 396–402.

[94]

Mangum, B. D.; Ghosh, Y.; Hollingsworth, J. A.; Htoon, H. Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments. Opt. Express 2013, 21, 7419–7426.

[95]

Mishra, N.; Orfield, N. J.; Wang, F.; Hu, Z. J.; Krishnamurthy, S.; Malko, A. V.; Casson, J. L.; Htoon, H.; Sykora, M.; Hollingsworth, J. A. Using shape to turn off blinking for two-colour multiexciton emission in CdSe/CdS tetrapods. Nat. Commun. 2017, 8, 15083.

[96]

Eloi, F.; Frederich, H.; Leray, A.; Buil, S.; Quélin, X.; Ji, B.; Giovanelli, E.; Lequeux, N.; Dubertret, B.; Hermier, J. P. Unraveling the time cross correlations of an emitter switching between two states with the same fluorescence intensity. Opt. Express 2015, 23, 29921–29928.

[97]

Feng, S. W.; Cheng, C. Y.; Wei, C. Y.; Yang, J. H.; Chen, Y. R.; Chuang, Y. W.; Fan, Y. H.; Chuu, C. S. Purification of single photons from room-temperature quantum dots. Phys. Rev. Lett. 2017, 119, 143601.

[98]

Ta, H.; Keller, J.; Haltmeier, M.; Saka, S. K.; Schmied, J.; Opazo, F.; Tinnefeld, P.; Munk, A.; Hell, S. W. Mapping molecules in scanning far-field fluorescence nanoscopy. Nat. Commun. 2015, 6, 7977.

[99]

Li, B.; Zhang, G. F.; Yang, C. G.; Li, Z. J.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Huang, H.; Xiao, L. T.; Jia, S. T. Fast recognition of single quantum dots from high multi-exciton emission and clustering effects. Opt. Express 2018, 26, 4674–4685.

[100]

Li, B.; Gao, Y. K.; Wu, R. X.; Miao, X. Y.; Zhang, G. F. Charge and energy transfer dynamics in single colloidal quantum dots/monolayer MoS2 heterostructures. Phys. Chem. Chem. Phys. 2023, 25, 8161–8167.

[101]

Zhai, X. T.; Zhang, R. X.; Sheng, H. X.; Wang, J.; Zhu, Y. M.; Lu, Z. C.; Li, Z. Y.; Huang, X.; Li, H.; Lu, G. Direct observation of the light-induced exfoliation of molybdenum disulfide sheets in water medium. ACS Nano 2021, 15, 5661–5670.

[102]

Chen, Y. Q.; Li, Z. Y.; Huang, X.; Lu, G.; Huang, W. Single-molecule mapping of catalytic reactions on heterostructures. Nano Today 2020, 34, 100957.

[103]

Li, Z. Y.; Devasenathipathy, R.; Wang, J. J.; Yu, L. Y. Z.; Liang, Y.; Sheng, H. X.; Zhu, Y. M.; Li, H.; Uji-i, H.; Huang, X. et al. Direct observation of the plasmon-enhanced palladium catalysis with single-molecule fluorescence microscopy. Nano Res. 2023, 16, 8817–8826.

[104]

Houel, J.; Doan, Q. T.; Cajgfinger, T.; Ledoux, G.; Amans, D.; Aubret, A.; Dominjon, A.; Ferriol, S.; Barbier, R.; Nasilowski, M. et al. Autocorrelation analysis for the unbiased determination of power-law exponents in single-quantum-dot blinking. ACS Nano 2015, 9, 886–893.

[105]

Zhang, G. F.; Rocha, S.; Lu, G.; Yuan, H. F.; Uji-i, H.; Floudas, G. A.; Müllen, K.; Xiao, L. T.; Hofkens, J.; Debroye, E. Spatially and temporally resolved heterogeneities in a miscible polymer blend. ACS Omega 2020, 5, 23931–23939.

[106]

Zhang, G. F.; Li, B.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Xiao, L. T.; Jia, S. T. Single-molecule probes revealed dynamics of confined nano-regions in miscible polymer blends. Acta Phys. Sin. 2019, 68, 148201.

[107]

Tachikawa, T.; Karimata, I.; Kobori, Y. Surface charge trapping in organolead halide perovskites explored by single-particle photoluminescence imaging. J. Phys. Chem. Lett. 2015, 6, 3195–3201.

[108]

Tian, W. M.; Zhao, C. Y.; Leng, J.; Cui, R. R.; Jin, S. Y. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 2015, 137, 12458–12461.

[109]

Hensgens, T.; Fujita, T.; Janssen, L.; Li, X.; Van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature 2017, 548, 70–73.

[110]

Tang, J. S.; Zhou, Z. Q.; Wang, Y. T.; Li, Y. L.; Liu, X.; Hua, Y. L.; Zou, Y.; Wang, S.; He, D. Y.; Chen, G. et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nat. Commun. 2015, 6, 8652.

[111]

Proppe, A. H.; Berkinsky, D. B.; Zhu, H.; Šverko, T.; Kaplan, A. E. K.; Horowitz, J. R.; Kim, T.; Chung, H.; Jun, S.; Bawendi, M. G. Highly stable and pure single-photon emission with 250 ps optical coherence times in InP colloidal quantum dots. Nat. Nanotechnol. 2023, 18, 993–999.

[112]

Berkinsky, D. B.; Proppe, A. H.; Utzat, H.; Krajewska, C. J.; Sun, W. W.; Šverko, T.; Yoo, J. J.; Chung, H.; Won, Y. H.; Kim, T. et al. Narrow intrinsic line widths and electron–phonon coupling of InP colloidal quantum dots. ACS Nano 2023, 17, 3598–3609.

[113]

Utzat, H.; Sun, W. W.; Kaplan, A. E. K.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N. D.; Shulenberger, K. E.; Perkinson, C. F.; Kovalenko, M. V. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 2019, 363, 1068–1072.

[114]

Liu, J. Q.; Zhu, C.; Pols, M.; Zhang, Z.; Hu, F. R.; Wang, L.; Zhang, C. F.; Liu, Z.; Tao, S. X.; Xiao, M. et al. Discrete elemental distributions inside a single mixed-halide perovskite nanocrystal for the self-assembly of multiple quantum-light sources. Nano Lett. 2023, 23, 10089–10096.

Nano Research
Pages 10332-10345
Cite this article:
Li B, Zhang G, Gao Y, et al. Single quantum dot spectroscopy for exciton dynamics. Nano Research, 2024, 17(12): 10332-10345. https://doi.org/10.1007/s12274-024-6504-x
Topics:

1574

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 29 November 2023
Revised: 10 January 2024
Accepted: 18 January 2024
Published: 07 March 2024
© Tsinghua University Press 2024
Return