Journal Home > Volume 17 , Issue 6

Two-electron oxygen reduction reaction (2e-ORR) provides an environmentally friendly direction for the on-site production of hydrogen peroxide (H2O2). Central to this technology is the exploitation of efficient, economical, and safe 2e-ORR electrocatalysts. This overview starts with the fundamental chemistry of ORR to highlight the decisive role of adsorbing intermediates on the reaction pathway and activity, followed by a comprehensive survey of the tuning strategies to favor 2e-ORR on traditional precious metals. The latest achievements in designing efficient and selective precious-metal-based single-atom catalysts (SACs) and metal-nitrogen-carbon (M-Nx/C) catalysts, from the aspects of material synthesis, theoretical calculations, and mass transport promotion, are systematically summarized. Brief introductions on the evaluation metrics for 2e-ORR catalysts and the primary reactor designs for cathodic H2O2 synthesis are also included. We conclude this review with an outlook on the challenges and direction of efforts to advance electrocatalytic 2e-ORR into realistic H2O2 production.


menu
Abstract
Full text
Outline
About this article

Selective oxygen electroreduction to hydrogen peroxide in acidic media: The superiority of single-atom catalysts

Show Author's information Ergui Luo1Tongtong Yang2,3Jingyi Liang1Yuhong Chang1Junming Zhang1( )Tianjun Hu1Junjie Ge2( )Jianfeng Jia1( )
Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Abstract

Two-electron oxygen reduction reaction (2e-ORR) provides an environmentally friendly direction for the on-site production of hydrogen peroxide (H2O2). Central to this technology is the exploitation of efficient, economical, and safe 2e-ORR electrocatalysts. This overview starts with the fundamental chemistry of ORR to highlight the decisive role of adsorbing intermediates on the reaction pathway and activity, followed by a comprehensive survey of the tuning strategies to favor 2e-ORR on traditional precious metals. The latest achievements in designing efficient and selective precious-metal-based single-atom catalysts (SACs) and metal-nitrogen-carbon (M-Nx/C) catalysts, from the aspects of material synthesis, theoretical calculations, and mass transport promotion, are systematically summarized. Brief introductions on the evaluation metrics for 2e-ORR catalysts and the primary reactor designs for cathodic H2O2 synthesis are also included. We conclude this review with an outlook on the challenges and direction of efforts to advance electrocatalytic 2e-ORR into realistic H2O2 production.

Keywords: oxygen reduction reaction, selectivity, single-atom catalysts, H2O2 production

References(97)

[1]

Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Hydrogen peroxide: A key chemical for today’s sustainable development. ChemSusChem 2016, 9, 3374–3381.

[2]

Lane, B. S.; Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. 2003, 103, 2457–2474.

[3]

Hage, R.; Lienke, A. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angew. Chem., Int. Ed. 2005, 45, 206–222.

[4]

Brillas, E.; Sirés, I.; Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631.

[5]

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

[6]

Gao, G. H.; Tian, Y. N.; Gong, X. X.; Pan, Z. Y.; Yang, K. Y.; Zong, B. N. Advances in the production technology of hydrogen peroxide. Chin. J. Catal. 2020, 41, 1039–1047.

[7]

Yi, Y. H.; Wang, L.; Li, G.; Guo, H. C. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: Noble-metal catalytic method, fuel-cell method and plasma method. Catal. Sci. Technol. 2016, 6, 1593–1610.

[8]

Edwards, J. K.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au-Pd catalysts. Faraday Discuss. 2008, 138, 225–239.

[9]

Edwards, J. K.; Hutchings, G. J. Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. Angew. Chem., Int. Ed. 2008, 47, 9192–9198.

[10]

Gheewala, C. D.; Collins, B. E.; Lambert, T. H. An aromatic ion platform for enantioselective Brønsted acid catalysis. Science 2016, 351, 961–965.

[11]

Flaherty, D. W. Direct synthesis of H2O2 from H2 and O2 on Pd catalysts: Current understanding, outstanding questions, and research needs. ACS Catal. 2018, 8, 1520–1527.

[12]

Ranganathan, S.; Sieber, V. Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis—A review. Catalysts 2018, 8, 379.

[13]

Edwards, J. K.; Freakley, S. J.; Lewis, R. J.; Pritchard, J. C.; Hutchings, G. J. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catal. Today 2015, 248, 3–9.

[14]

Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

[15]

Pang, Y. Y.; Xie, H.; Sun, Y.; Titirici, M. M.; Chai, G. L. Electrochemical oxygen reduction for H2O2 production: Catalysts, pH effects and mechanisms. J. Mater. Chem. A 2020, 8, 24996–25016.

[16]

Lewis, R. J.; Hutchings, G. J. Recent advances in the direct synthesis of H2O2. ChemCatChem 2019, 11, 298–308.

[17]

Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

[18]

Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.

[19]

Otsuka, K.; Yamanaka, I. One step synthesis of hydrogen peroxide through fuel cell reaction. Electrochim. Acta 1990, 35, 319–322.

[20]

Yamanaka, I.; Onizawa, T.; Takenaka, S.; Otsuka, K. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system. Angew. Chem., Int. Ed. 2003, 42, 3653–3655.

[21]

Yamanaka, I.; Hashimoto, T.; Ichihashi, R.; Otsuka, K. Direct synthesis of H2O2 acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H2/O2 fuel cell. Electrochim. Acta 2008, 53, 4824–4832.

[22]

Jung, E.; Shin, H.; Antink, W. H.; Sung, Y. E.; Hyeon, T. Recent advances in electrochemical oxygen reduction to H2O2: Catalyst and cell design. ACS Energy Lett. 2020, 5, 1881–1892.

[23]

Foller, P. C.; Bombard, R. T. Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J. Appl. Electrochem. 1995, 25, 613–627.

[24]

Zhang, J. Y.; Zhang, H. C.; Cheng, M. J.; Lu, Q. Tailoring the electrochemical production of H2O2: Strategies for the rational design of high-performance electrocatalysts. Small 2020, 16, 1902845.

[25]

Wang, N.; Ma, S. B.; Zuo, P. J.; Duan, J. Z.; Hou, B. R. Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction. Adv. Sci. 2021, 8, 2100076.

[26]

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

[27]

Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608.

[28]

Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 2017, 7, 1301–1307.

[29]

Sahoo, S. K.; Ye, Y.; Lee, S.; Park, J.; Lee, H.; Lee, J.; Han, J. W. Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions. ACS Energy Lett. 2019, 4, 126–132.

[30]

Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.

[31]

Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuS x for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

[32]

Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

[33]

Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, 1802920.

[34]

Zhou, Y.; Chen, G.; Zhang, J. J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. J. Mater. Chem. A 2020, 8, 20849–20869.

[35]

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

[36]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[37]

Sun, Y. Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J. K.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X. L. et al. Activity–selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 2019, 141, 12372–12381.

[38]

Cui, X. Q.; Zhong, L. J.; Zhao, X.; Xie, J. X.; He, D. Q.; Yang, X.; Lin, K. L.; Wang, H.; Niu, L. Ultrafine Co nanoparticles confined in nitrogen-doped carbon toward two-electron oxygen reduction reaction for H2O2 electrosynthesis in acidic media. Chin. Chem. Lett. 2023, 34, 108291.

[39]

Gong, H. X.; Wei, L. Z.; Chen, S. C.; Chen, Z. H.; Jaramillo, T. F.; Bao, Z. N. Carbon flowers as electrocatalysts for the reduction of oxygen to hydrogen peroxide. Nano Res. 2023, 16, 11556–11563.

[40]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[41]

Gao, J. J.; Liu, B. Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Materials Lett. 2020, 2, 1008–1024.

[42]

Liu, K. Y.; Chen, P. W.; Sun, Z. Y.; Chen, W. X.; Zhou, Q.; Gao, X. The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production. Nano Res. 2023, 16, 10724–10741.

[43]

Qiang, Z. M.; Chang, J. H.; Huang, C. P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res. 2002, 36, 85–94.

[44]

Kuo, W. G. Decolorizing dye wastewater with Fenton’s reagent. Water Res. 1992, 26, 881–886.

[45]

Miklos, D. B.; Remy, C.; Jekel, M.; Linden, K. G.; Drewes, J. E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131.

[46]

Kremer, M. L. The Fenton Reaction. Dependence of the Rate on pH. J. Phys. Chem. A 2003, 107, 1734–1741.

[47]

Mustain, W. E.; Chatenet, M.; Page, M.; Kim, Y. S. Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci. 2020, 13, 2805–2838.

[48]

Merle, G.; Wessling, M.; Nijmeijer, K. Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 2011, 377, 1–35.

[49]

Li, W.; Bonakdarpour, A.; Gyenge, E.; Wilkinson, D. P. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell. ChemSusChem 2013, 6, 2137–2143.

[50]

Yamanaka, I.; Murayama, T. Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem., Int. Ed. 2008, 47, 1900–1902.

[51]

Sun, K.; Xu, W. W.; Lin, X.; Tian, S. B.; Lin, W. F.; Zhou, D. J.; Sun, X. M. Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts. Adv. Mater. Interfaces 2021, 8, 2001360.

[52]

Siahrostami, S.; Villegas, S. J.; Mostaghimi, A. H. B.; Back, S.; Farimani, A. B.; Wang, H. T.; Persson, K. A.; Montoya, J. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 2020, 10, 7495–7511.

[53]

Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Norskov, J. K. Unifying the 2e and 4e reduction of oxygen on metal surfaces. J. Phys. Chem. Lett. 2012, 3, 2948–2951.

[54]

Lin, Z. H.; Zhang, Q. R.; Pan, J.; Tsounis, C.; Esmailpour, A. A.; Xi, S. B.; Yang, H. Y.; Han, Z. J.; Yun, J.; Amal, R. et al. Atomic Co decorated free-standing graphene electrode assembly for efficient hydrogen peroxide production in acid. Energy Environ. Sci. 2022, 15, 1172–1182.

[55]

Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 2013, 4, 2710–2723.

[56]

Siahrostami, S.; Verdaguer-Casdevall, A.; Karamad, M.; Chorkendorff, I.; Stephens, I. E. L.; Rossmeisl, J. Activity and selectivity for O2 reduction to H2O2 on transition metal surfaces. ECS Trans. 2013, 58, 53–62.

[57]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[58]

Zagal, J. H.; Koper, M. T. M. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 14510–14521.

[59]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad499.

[60]

Tripković, V.; Skúlason, E.; Siahrostami, S.; Nørskov, J. K.; Rossmeisl, J. The oxygen reduction reaction mechanism on Pt (111) from density functional theory calculations. Electrochim. Acta 2010, 55, 7975–7981.

[61]

Montemore, M. M.; van Spronsen, M. A.; Madix, R. J.; Friend, C. M. O2 activation by metal surfaces: Implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 2018, 118, 2816–2862

[62]

Cheng, J.; Libisch, F.; Carter, E. A. Dissociative adsorption of O2 on Al (111): The role of orientational degrees of freedom. J. Phys. Chem. Lett. 2015, 6, 1661–1665.

[63]

Chang, Q. W.; Zhang, P.; Mostaghimi, A. H. B.; Zhao, X. R.; Denny, S. R.; Lee, J. H.; Gao, H. P.; Zhang, Y.; Xin, H. L.; Siahrostami, S. et al. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 2020, 11, 2178.

[64]

Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Antink, W. H.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

[65]

Sheng, H. Y.; Hermes, E. D.; Yang, X. H.; Ying, D. W.; Janes, A. N.; Li, W. J.; Schmidt, J. R.; Jin, S. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 2019, 9, 8433–8442.

[66]

Sun, Y. Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spöri, C.; Schmies, H.; Wang, H.; Bernsmeier, D. et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 2018, 8, 2844–2856.

[67]

Wei, J. Q.; Chen, X. D.; Li, S. Z. Electrochemical syntheses of nanomaterials and small molecules for electrolytic hydrogen production. J. Electrochem. 2022, 28, 2214012.

[68]

Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

[69]

Čolić, V.; Yang, S.; Révay, Z.; Stephens, I. E. L.; Chorkendorff, I. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media. Electrochim. Acta 2018, 272, 192–202.

[70]

Murray, A. T.; Voskian, S.; Schreier, M.; Hatton, T. A.; Surendranath, Y. Electrosynthesis of hydrogen peroxide by phase-transfer catalysis. Joule 2019, 3, 2942–2954.

[71]

Zhang, J. C.; Yang, H. B.; Gao, J. J.; Xi, S. B.; Cai, W. Z.; Zhang, J. M.; Cui, P.; Liu, B. Design of hierarchical, three-dimensional free-standing single-atom electrode for H2O2 production in acidic media. Carbon Energy 2020, 2, 276–282.

[72]

Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 2020, 6, 658–674.

[73]

Xu, S. S.; Gao, Y.; Liang, T.; Zhang, L. P.; Wang, B. N,O-coupling towards the selectively electrochemical production of H2O2. Chin. Chem. Lett. 2022, 33, 5152–5157.

[74]

Liu, Y. M.; Quan, X.; Fan, X. F.; Wang, H.; Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem., Int. Ed. 2015, 54, 6837–6841.

[75]

Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.

[76]

Zhang, X.; Zhao, X. H.; Zhu, P.; Adler, Z.; Wu, Z. Y.; Liu, Y. Y.; Wang, H. T. Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nat. Commun. 2022, 13, 2880.

[77]

Jirkovsky, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

[78]

Genorio, B.; Strmcnik, D.; Subbaraman, R.; Tripkovic, D.; Karapetrov, G.; Stamenkovic, V. R.; Pejovnik, S.; Markovic, N. M. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat. Mater. 2010, 9, 998–1003.

[79]

Ciapina, E. G.; Lopes, P. P.; Subbaraman, R.; Ticianelli, E. A.; Stamenkovic, V.; Strmcnik, D.; Markovic, N. M. Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments. Electrochem. Commun. 2015, 60, 30–33.

[80]

Stamenkovic, V.; Markovic, N. M.; Ross, P. N. Jr. Structure-relationships in electrocatalysis: Oxygen reduction and hydrogen oxidation reactions on Pt (111) and Pt (100) in solutions containing chloride ions. J. Electroanal. Chem. 2001, 500, 44–51.

[81]

He, D. Q.; Zhong, L. J.; Gan, S. Y.; Xie, J. X.; Wang, W.; Liu, Z. B.; Guo, W.; Yang, X.; Niu, L. Hydrogen peroxide electrosynthesis via regulating the oxygen reduction reaction pathway on Pt noble metal with ion poisoning. Electrochim. Acta 2021, 371, 137721.

[82]

Choi, C. H.; Kwon, H. C.; Yook, S.; Shin, H.; Kim, H.; Choi, M. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 2014, 118, 30063–30070.

[83]

Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.

[84]

Kim, J. H.; Shin, D.; Lee, J.; Baek, D. S.; Shin, T. J.; Kim, Y. T.; Jeong, H. Y.; Kwak, J. H.; Kim, H.; Joo, S. H. A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano 2020, 14, 1990–2001.

[85]

Zhao, J. J.; Fu, C. H.; Ye, K.; Liang, Z.; Jiang, F. L.; Shen, S. Y.; Zhao, X. R.; Ma, L.; Shadike, Z.; Wang, X. M. et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat. Commun. 2022, 13, 685.

[86]

Jin, M. M.; Liu, W.; Sun, J. Q.; Wang, X. Z.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ag clusters for active and stable hydrogen peroxide production. Nano Res. 2022, 15, 5842–5847.

[87]

von Weber, A.; Baxter, E. T.; White, H. S.; Anderson, S. L. Cluster size controls branching between water and hydrogen peroxide production in electrochemical oxygen reduction at Pt n /ITO. J. Phys. Chem. C 2015, 119, 11160–11170.

[88]

Xi, J. B.; Yang, S.; Silvioli, L.; Cao, S. F.; Liu, P.; Chen, Q. Y.; Zhao, Y. Y.; Sun, H. Y.; Hansen, J. N.; Haraldsted, J. P. B. et al. Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. J. Catal. 2021, 393, 313–323.

[89]

Wang, N.; Zhao, X. H.; Zhang, R.; Yu, S.; Levell, Z. H.; Wang, C. Y.; Ma, S. B.; Zou, P. C.; Han, L. L.; Qin, J. Y. et al. Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst. ACS Catal. 2022, 12, 4156–4164.

[90]

Guo, X. Y.; Lin, S. R.; Gu, J. X.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts. ACS Catal. 2019, 9, 11042–11054.

[91]

Liu, W.; Zhang, C.; Zhang, J. J.; Huang, X.; Song, M.; Li, J. W.; He, F.; Yang, H. P.; Zhang, J.; Wang, D. L. Tuning the atomic configuration of Co-N-C electrocatalyst enables highly-selective H2O2 production in acidic media. Appl. Catal. B: Environ. 2022, 310, 121312.

[92]

Gong, H. S.; Wei, Z. X.; Gong, Z. C.; Liu, J. J.; Ye, G. L.; Yan, M. M.; Dong, J. C.; Allen, C.; Liu, J. B.; Huang, K. et al. Low-coordinated Co-N-C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 2022, 32, 2106886.

[93]

Zhang, Q. R.; Tan, X.; Bedford, N. M.; Han, Z. J.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Y. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 2020, 11, 4181.

[94]

Zhao, X. H.; Liu, Y. Y. Origin of selective production of hydrogen peroxide by electrochemical oxygen reduction. J. Am. Chem. Soc. 2021, 143, 9423–9428.

[95]

Muthukrishnan, A.; Nabae, Y.; Okajima, T.; Ohsaka, T. Kinetic approach to investigate the mechanistic pathways of oxygen reduction reaction on Fe-containing N-doped carbon catalysts. ACS Catal. 2015, 5, 5194–5202.

[96]

Bonakdarpour, A.; Lefevre, M.; Yang, R. Z.; Jaouen, F.; Dahn, T.; Dodelet, J. P.; Dahn, J. R. Impact of loading in RRDE experiments on Fe-N-C catalysts: Two- or four-electron oxygen reduction. Electrochem. Solid-State Lett. 2008, 11, B105–B108.

[97]

Wu, K. H.; Wang, D.; Lu, X. Y.; Zhang, X. F.; Xie, Z. L.; Liu, Y. F.; Su, B. J.; Chen, J. M.; Su, D. S.; Qi, W. et al. Highly selective hydrogen peroxide electrosynthesis on carbon: In situ interface engineering with surfactants. Chem 2020, 6, 1443–1458.

Publication history
Copyright
Acknowledgements

Publication history

Received: 24 December 2023
Revised: 15 January 2024
Accepted: 18 January 2024
Published: 22 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22209102) and Natural Science Foundation of Shanxi Province (No. 202203021212398).

Return