AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Geometric edge effect on the interface of Au/CeO2 nanocatalysts for CO oxidation

Hongpeng Liu1,§Zhongliang Cao1,§Siyuan Yang1,§Qingye Ren1Zejian Dong1Wei Liu2Zi-An Li3( )Xing Chen1,4( )Langli Luo1,4( )
Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

§ Hongpeng Liu, Zhongliang Cao, and Siyuan Yang contributed equally to this work.

Show Author Information

Graphical Abstract

In the case of catalysts where well-defined-shaped carriers are used as supports, when the size of the carrier approaches that of the loaded nanoparticles, the probability of contact between the nanoparticles and the edges of the carrier increases significantly. This leads to the formation of “edge-interfaces” that are different from the typical interface sites.

Abstract

The oxide supports play a crucial role in anchoring and promoting the active metal species by geometric confinement and chemical interaction. The design and synthesis of the well-defined oxide support with specific morphology such as size, shape, and exposed facets have attracted extensive research efforts, which directly reflects on their catalytic performance. In this study, using an Au/CeO2-nanorod model catalyst, we demonstrate an edge effect on the Au/CeO2 interfacial structure, which shows a prominent effect on the structure–performance relationship in the CO oxidation reaction. This specific “edge-interface” structure features an “edge-on” Au nanoparticles position on rod-shaped CeO2 support, confirmed by atomic-scale electron microscopy characterization, which introduces additional degrees of freedom in coordination environment, chemical state, bond length, and strength. Combined with theocratical calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) investigations, we confirmed that this “edge-interface” has distinct adsorption properties due to the change of O vacancy formation energy as well as the chemical states of Au resulting from the electron transfer and redistribution between the metal and the support. These results demonstrate a non-conventional geometric effect of rod-shaped supported metal catalysts on the catalytic performance, which could provide insights into the atomic-precise utilization of catalysts.

Electronic Supplementary Material

Download File(s)
12274_2024_6508_MOESM1_ESM.pdf (2.4 MB)

References

[1]

Sankar, M.; He, Q.; Engel, R. V.; Sainna, M. A.; Logsdail, A. J.; Roldan, A.; Willock, D. J.; Agarwal, N.; Kiely, C. J.; Hutchings, G. J. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020, 120, 3890–3938.

[2]

Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

[3]

van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

[4]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[5]

Munnik, P.; de Jongh, P. E.; de Jong, K. P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 2015, 115, 6687–6718.

[6]

Ta, N.; Liu, J. Y.; Chenna, S.; Crozier, P. A.; Li, Y.; Chen, A. L.; Shen, W. J. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 2012, 134, 20585–20588.

[7]

Wang, Y. C.; Widmann, D.; Behm, R. J. Influence of TiO2 bulk defects on CO adsorption and CO oxidation on Au/TiO2: Electronic metal–support interactions (EMSIs) in supported Au catalysts. ACS Catal. 2017, 7, 2339–2345.

[8]

Carrettin, S.; Concepción, P.; Corma, A.; López Nieto, J. M.; Puntes, V. F. Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem., Int. Ed. 2004, 43, 2538–2540.

[9]

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 2003, 301, 935–938.

[10]
Sakurai, H.; Ueda, A.; Kobayashi, T.; Haruta, M. Low-temperature water–gas shift reaction over gold deposited on TiO2. Chem. Commun. 1997 , 271–272.
[11]
Yuan, W. T.; Zhu, B. E.; Fang, K.; Li, X. Y.; Hansen, T. W.; Ou, Y.; Yang, H. S.; Wagner, J. B.; Gao, Y.; Wang, Y. et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation. Science 2021 , 371, 517–521.
[12]

Suchorski, Y.; Kozlov, S. M.; Bespalov, I.; Datler, M.; Vogel, D.; Budinska, Z.; Neyman, K. M.; Rupprechter, G. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nat. Mater. 2018, 17, 519–522.

[13]

Ha, H.; Yoon, S.; An, K.; Kim, H. Y. Catalytic CO oxidation over Au nanoparticles supported on CeO2 nanocrystals: Effect of the Au–CeO2 interface. ACS Catal. 2018, 8, 11491–11501.

[14]

Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. The critical role of water at the gold–titania interface in catalytic CO oxidation. Science 2014, 345, 1599–1602.

[15]

Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 2013, 341, 771–773.

[16]
Ahn, S. Y.; Jang, W. J.; Shim, J. O.; Jeon, B. H.; Roh, H. S. CeO2-based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: Extended application and key catalytic properties. Catal. Rev., in press, https://doi.org/10.1080/01614940.2022.2162677.
[17]

Liu, J. C.; Luo, L. L.; Xiao, H.; Zhu, J. F.; He, Y.; Li, J. Metal affinity of support dictates sintering of gold catalysts. J. Am. Chem. Soc. 2022, 144, 20601–20609.

[18]

Zhang, Y.; Zhao, S. N.; Feng, J.; Song, S. Y.; Shi, W. D.; Wang, D.; Zhang, H. J. Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem 2021, 7, 2022–2059.

[19]

He, Y.; Liu, J. C.; Luo, L. L.; Wang, Y. G.; Zhu, J. F.; Du, Y. G.; Li, J.; Mao, S. X.; Wang, C. M. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc. Natl. Acad. Sci. USA 2018, 115, 7700–7705.

[20]

Rodriguez, J. A.; Grinter, D. C.; Liu, Z. Y.; Palomino, R. M.; Senanayake, S. D. Ceria-based model catalysts: Fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824–1841.

[21]

Luo, L. L.; Chen, S. Y.; Xu, Q.; He, Y.; Dong, Z. J.; Zhang, L. F.; Zhu, J. F.; Du, Y. G.; Yang, B.; Wang, C. M. Dynamic atom clusters on AuCu nanoparticle surface during CO oxidation. J. Am. Chem. Soc. 2020, 142, 4022–4027.

[22]

Chang, M. W.; Zhang, L.; Davids, M.; Filot, I. A. W.; Hensen, E. J. M. Dynamics of gold clusters on ceria during CO oxidation. J. Catal. 2020, 392, 39–47.

[23]

Kim, H. Y.; Lee, H. M.; Henkelman, G. CO oxidation mechanism on CeO2-supported Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 1560–1570.

[24]

Guzman, J.; Carrettin, S.; Corma, A. Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc. 2005, 127, 3286–3287.

[25]

Soler, L.; Casanovas, A.; Urrich, A.; Angurell, I.; Llorca, J. CO oxidation and COPrOx over preformed Au nanoparticles supported over nanoshaped CeO2. Appl. Catal. B: Environ. 2016, 197, 47–55.

[26]

Reina, T. R.; Ivanova, S.; Laguna, O. H.; Centeno, M. A.; Odriozola, J. A. WGS and CO-PrO x reactions using gold promoted copper-ceria catalysts: “Bulk CuO-CeO2 vs. CuO-CeO2/Al2O3 with low mixed oxide content”. Appl. Catal. B: Environ. 2016, 197, 62–72.

[27]

Pozdnyakova, O.; Teschner, D.; Wootsch, A.; Kröhnert, J.; Steinhauer, B.; Sauer, H.; Toth, L.; Jentoft, F. C.; Knop-Gericke, A.; Paál, Z. et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions. J. Catal. 2006, 237, 1–16.

[28]

Ning, J.; Zhou, Y.; Shen, W. J. Atomically dispersed copper species on ceria for the low-temperature water–gas shift reaction. Sci. China Chem. 2021, 64, 1103–1110.

[29]

Karpenko, A.; Leppelt, R.; Cai, J.; Plzak, V.; Chuvilin, A.; Kaiser, U.; Behm, R. J. Deactivation of a Au/CeO2 catalyst during the low-temperature water–gas shift reaction and its reactivation: A combined TEM, XRD, XPS, DRIFTS, and activity study. J. Catal. 2007, 250, 139–150.

[30]

Fu, Q.; Kudriavtseva, S.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Gold-ceria catalysts for low-temperature water–gas shift reaction. Chem. Eng. J. 2003, 93, 41–53.

[31]

Li, Y. Y.; Kottwitz, M.; Vincent, J. L.; Enright, M. J.; Liu, Z. Y.; Zhang, L. H.; Huang, J. H.; Senanayake, S. D.; Yang, W. C. D.; Crozier, P. A. et al. Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction. Nat. Commun. 2021, 12, 914.

[32]

Andreeva, D.; Idakiev, V.; Tabakova, T.; Ilieva, L.; Falaras, P.; Bourlinos, A.; Travlos, A. Low-temperature water–gas shift reaction over Au/CeO2 catalysts. Catal. Today 2002, 72, 51–57.

[33]

Wen, Y.; Huang, Q. Y.; Zhang, Z. H.; Huang, W. X. Morphology-dependent catalysis of CeO2-based nanocrystal model catalysts. Chin. J. Chem. 2022, 40, 1856–1866.

[34]

Lin, Y. Y.; Wu, Z. L.; Wen, J. G.; Ding, K. L.; Yang, X. Y.; Poeppelmeier, K. R.; Marks, L. D. Adhesion and atomic structures of gold on ceria nanostructures: The role of surface structure and oxidation state of ceria supports. Nano Lett. 2015, 15, 5375–5381.

[35]

Li, Y.; Shen, W. J. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014, 43, 1543–1574.

[36]

Huang, W. X.; Gao, Y. X. Morphology-dependent surface chemistry and catalysis of CeO2 nanocrystals. Catal. Sci. Technol. 2014, 4, 3772–3784.

[37]

Wu, Z. L.; Li, M. J.; Overbury, S. H. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J. Catal. 2012, 285, 61–73.

[38]

Tana; Zhang, M. L.; Li, J.; Li, H. J.; Li, Y.; Shen, W. J. Morphology-dependent redox and catalytic properties of CeO2 nanostructures: Nanowires, nanorods and nanoparticles. Catal. Today 2009, 148, 179–183.

[39]

Zhou, K.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206–212.

[40]

Aneggi, E.; Llorca, J.; Boaro, M.; Trovarelli, A. Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders. J. Catal. 2005, 234, 88–95.

[41]

Zhang, L. J.; Chen, R. H.; Tu, Y.; Gong, X. Y.; Cao, X.; Xu, Q.; Li, Y.; Ye, B. J.; Ye, Y. F.; Zhu, J. F. Revealing the crystal facet effect of ceria in Pd/CeO2 catalysts toward the selective oxidation of benzyl alcohol. ACS Catal. 2023, 13, 2202–2213.

[42]

Li, Z. M.; Zhang, X. Y.; Shi, Q. Q.; Gong, X.; Xu, H.; Li, G. Morphology effect of ceria supports on gold nanocluster catalyzed CO oxidation. Nanoscale Adv. 2021, 3, 7002–7006.

[43]

Jiang, F.; Wang, S. S.; Liu, B.; Liu, J.; Wang, L.; Xiao, Y.; Xu, Y. B.; Liu, X. H. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts. ACS Catal. 2020, 10, 11493–11509.

[44]

Huang, X. S.; Sun, H.; Wang, L. C.; Liu, Y. M.; Fan, K. N.; Cao, Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal. B: Environ. 2009, 90, 224–232.

[45]

Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385.

[46]

Si, R.; Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem., Int. Ed. 2008, 47, 2884–2887.

[47]

Nolan, M.; Watson, G. W. The surface dependence of CO adsorption on ceria. J. Phys. Chem. B 2006, 110, 16600–16606.

[48]

Nolan, M.; Parker, S. C.; Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 2005, 595, 223–232.

[49]

Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

[50]

Trovarelli, A.; Llorca, J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis. ACS Catal. 2017, 7, 4716–4735.

[51]

Yao, S. Y.; Xu, W. Q.; Johnston-Peck, A. C.; Zhao, F. Z.; Liu, Z. Y.; Luo, S.; Senanayake, S. D.; Martínez-Arias, A.; Liu, W. J.; Rodriguez, J. A. Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO2 catalysts for the water–gas shift reaction. Phys. Chem. Chem. Phys. 2014, 16, 17183–17195.

[52]

Zanella, R.; Giorgio, S.; Henry, C. R.; Louis, C. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B 2002, 106, 7634–7642.

[53]

Haftel, M. I. Ehrlich–Schwoebel effect for vacancies: Low-index faces of silver. Phys. Rev. B 2001, 64, 125415.

[54]

Kim, H. Y.; Henkelman, G. CO oxidation at the interface of Au nanoclusters and the stepped-CeO2 (111) surface by the Mars–van Krevelen mechanism. J. Phys. Chem. Lett. 2013, 4, 216–221.

[55]

Li, C.; Sakata, Y.; Arai, T.; Domen, K.; Maruya, K. I.; Onishi, T. Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 1. Formation of carbonate species on dehydroxylated CeO2, at room temperature. J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 1989, 85, 929–943.

[56]

Fu, X. P.; Guo, L. W.; Wang, W. W.; Ma, C.; Jia, C. J.; Wu, K.; Si, R.; Sun, L. D.; Yan, C. H. Direct identification of active surface species for the water–gas shift reaction on a gold-ceria catalyst. J. Am. Chem. Soc. 2019, 141, 4613–4623.

[57]

Jin, Z.; Song, Y. Y.; Fu, X. P.; Song, Q. S.; Jia, C. J. Nanoceria supported gold catalysts for CO oxidation. Chin. J. Chem. 2018, 36, 639–643.

[58]

Chen, S. L.; Luo, L. F.; Jiang, Z. Q.; Huang, W. X. Size-dependent reaction pathways of low-temperature CO oxidation on Au/CeO2 catalysts. ACS Catal. 2015, 5, 1653–1662.

[59]

Vayssilov, G. N.; Mihaylov, M.; Petkov, P. S.; Hadjiivanov, K. I.; Neyman, K. M. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: A combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 2011, 115, 23435–23454.

[60]

Camellone, M. F.; Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 2009, 131, 10473–10483.

Nano Research
Pages 4986-4993
Cite this article:
Liu H, Cao Z, Yang S, et al. Geometric edge effect on the interface of Au/CeO2 nanocatalysts for CO oxidation. Nano Research, 2024, 17(6): 4986-4993. https://doi.org/10.1007/s12274-024-6508-6
Topics:

1137

Views

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 17 November 2023
Revised: 06 January 2024
Accepted: 21 January 2024
Published: 23 March 2024
© Tsinghua University Press 2024
Return