Journal Home > Online First

The combination of donor–acceptor (D–A) structures presents a viable strategy for fabricating covalent organic frameworks (COFs) with exceptional photocatalytic performances. Nevertheless, the selection of functional groups on donor or acceptor building blocks and their effect on the macroscopic properties of COFs are ambiguous. In this study, we tactfully synthesized a pair of Py-DBT-COFs from the same pyrene (Py) donor and 4,7-diphenylbenzo[c][1,2,5]thiadiazole (DBT) acceptor cores with distinct primitive functional groups. The primitive functional groups of building units determine the photocatalytic properties of corresponding Py-DBT-COFs. Specifically, Py-C-DBT-COF synthesized from Py-4CHO and DBT-2NH2 showcases a splendid H2 evolution rate as high as 21,377.7 μmol/(g·h) (with 5 wt.% Pt) originating from better charge transfer capacity, which is significantly superior to that of Py-N-DBT-COF constructed from Py-4NH2 and DBT-2CHO. The distinct photocatalytic performances of the two COFs are demonstrated to originate from the different charge separation and transfer capabilities. This work supplies a new avenue for optimizing the photocatalytic performance of D–A COFs from the perspective of primitive functional group selections.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Primitive functional groups directed distinct photocatalytic performance of imine-linked donor–acceptor covalent organic frameworks

Show Author's information Xitong Ren1Jiajie Sun2Yusen Li1( )Feng Bai1( )
Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
School of Physics and Electronics, Henan University, Kaifeng 475004, China

Abstract

The combination of donor–acceptor (D–A) structures presents a viable strategy for fabricating covalent organic frameworks (COFs) with exceptional photocatalytic performances. Nevertheless, the selection of functional groups on donor or acceptor building blocks and their effect on the macroscopic properties of COFs are ambiguous. In this study, we tactfully synthesized a pair of Py-DBT-COFs from the same pyrene (Py) donor and 4,7-diphenylbenzo[c][1,2,5]thiadiazole (DBT) acceptor cores with distinct primitive functional groups. The primitive functional groups of building units determine the photocatalytic properties of corresponding Py-DBT-COFs. Specifically, Py-C-DBT-COF synthesized from Py-4CHO and DBT-2NH2 showcases a splendid H2 evolution rate as high as 21,377.7 μmol/(g·h) (with 5 wt.% Pt) originating from better charge transfer capacity, which is significantly superior to that of Py-N-DBT-COF constructed from Py-4NH2 and DBT-2CHO. The distinct photocatalytic performances of the two COFs are demonstrated to originate from the different charge separation and transfer capabilities. This work supplies a new avenue for optimizing the photocatalytic performance of D–A COFs from the perspective of primitive functional group selections.

Keywords: photocatalysis, functional group, covalent organic frameworks, donor-acceptor

References(53)

[1]

Yaghi, O. M. The reticular chemist. Nano Lett. 2020, 20, 8432–8434.

[2]

Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

[3]

Gropp, C.; Ma, T. Q.; Hanikel, N.; Yaghi, O. M. Design of higher valency in covalent organic frameworks. Science 2020, 370, eabd6406.

[4]

Yang, Q.; Luo, M. L.; Liu, K. W.; Cao, H. M.; Yan, H. J. Covalent organic frameworks for photocatalytic applications. Appl. Catal. B: Environ. 2020, 276, 119174.

[5]

Liu, Y. Y.; Li, X. C.; Wang, S.; Cheng, T.; Yang, H. Y.; Liu, C.; Gong, Y. T.; Lai, W. Y.; Huang, W. Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks. Nat. Commun. 2020, 11, 5561.

[6]

Liang, R. R.; Jiang, S. Y.; A, R. H.; Zhao, X. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 2020, 49, 3920–3951.

[7]

Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y. et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

[8]

Ren, X. T.; Wang, X. Y.; Song, W.; Bai, F.; Li, Y. S. Fascinating isomeric covalent organic frameworks. Nanoscale 2023, 15, 4762–4771.

[9]

Zhang, Y. F.; Liu, H. X.; Gao, F. X.; Tan, X. L.; Cai, Y. W.; Hu, B. W.; Huang, Q. F.; Fang, M.; Wang, X. K. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem 2022, 4, 100078.

[10]

Guan, Q.; Zhou, L. L.; Dong, Y. B. Metalated covalent organic frameworks: From synthetic strategies to diverse applications. Chem. Soc. Rev. 2022, 51, 6307–6416.

[11]

Li, Y. S.; Guo, L. S.; Lv, Y. K.; Zhao, Z. Q.; Ma, Y. H.; Chen, W. H.; Xing, G. L.; Jiang, D. L.; Chen, L. Polymorphism of 2D imine covalent organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 5363–5369.

[12]

Shi, X. S.; Zhang, Z.; Fang, S. Y.; Wang, J. T.; Zhang, Y. T.; Wang, Y. Flexible and robust three-dimensional covalent organic framework membranes for precise separations under extreme conditions. Nano Lett. 2021, 21, 8355–8362.

[13]

Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.

[14]

Sun, R. M.; Hou, S.; Luo, C.; Ji, X.; Wang, L. N.; Mai, L.; Wang, C. S. A covalent organic framework for fast-charge and durable rechargeable Mg storage. Nano Lett. 2020, 20, 3880–3888.

[15]

Wu, C. Y.; Liu, Y. M.; Liu, H.; Duan, C. H.; Pan, Q. Y.; Zhu, J.; Hu, F.; Ma, X. Y.; Jiu, T.; Li, Z. B. et al. Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J. Am. Chem. Soc. 2018, 140, 10016–10024.

[16]

Fu, J. X.; Liu, Y.; Chen, L. H.; Han, W. K.; Liu, X.; Shao, J. X.; Yan, X. D.; Gu, Z. G. Positional isomers of covalent organic frameworks for indoor humidity regulation. Small 2023, 19, 2303897.

[17]

Xu, Y. Y.; Sun, T.; Zeng, T. W.; Zhang, X. Y.; Yao, X.; Liu, S.; Shi, Z. L.; Wen, W.; Zhao, Y. B.; Jiang, S. et al. Symmetry-breaking dynamics in a tautomeric 3D covalent organic framework. Nat. Commun. 2023, 14, 4215.

[18]

Guo, L. L.; Yang, L.; Li, M. Y.; Kuang, L. J.; Song, Y. H.; Wang, L. Covalent organic frameworks for fluorescent sensing: Recent developments and future challenges. Coord. Chem. Rev. 2021, 440, 213957.

[19]

Gui, B.; Xin, J. J.; Cheng, Y. P.; Zhang, Y. F.; Lin, G. Q.; Chen, P. H.; Ma, J. X.; Zhou, X.; Sun, J. L.; Wang, C. Crystallization of dimensional isomers in covalent organic frameworks. J. Am. Chem. Soc. 2023, 145, 11276–11281.

[20]

Li, S. X.; Ma, R.; Xu, S. Q.; Zheng, T. Y.; Fu, G. G.; Wu, Y. L.; Liao, Z. Q.; Kuang, Y. B.; Hou, Y.; Wang, D. S. et al. Direct construction of isomeric benzobisoxazole-vinylene-linked covalent organic frameworks with distinct photocatalytic properties. J. Am. Chem. Soc. 2022, 144, 13953–13960.

[21]

Dong, W. B.; Qin, Z. Y.; Wang, K. X.; Xiao, Y. Y.; Liu, X. Y.; Ren, S. J.; Li, L. Y. Isomeric oligo(phenylenevinylene)-based covalent organic frameworks with different orientation of imine bonds and distinct photocatalytic activities. Angew. Chem., Int. Ed. 2023, 62, e202216073.

[22]

Liao, Q. B.; Sun, Q. N.; Xu, H. C.; Wang, Y. D.; Xu, Y.; Li, Z. Y.; Hu, J. W.; Wang, D.; Li, H. J.; Xi, K. Regulating relative nitrogen locations of diazine functionalized covalent organic frameworks for overall H2O2 photosynthesis. Angew. Chem., Int. Ed. 2023, 62, e202310556.

[23]

Liu, X. L.; Yang, X. Y.; Ding, X.; Wang, H. L.; Cao, W.; Jin, Y. C.; Yu, B. Q.; Jiang, J. Z. Covalent organic frameworks with imine proton acceptors for efficient photocatalytic H2 production. Chin. Chem. Lett. 2023, 34, 108148.

[24]

Hao, L.; Shen, R. C.; Huang, C.; Liang, Z. Z.; Li, N.; Zhang, P.; Li, X. Z.; Qin, C. C.; Li, X. Fluorenone-based covalent organic frameworks with efficient exciton dissociation and well-defined active center for remarkable photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2023, 330, 122581.

[25]

Wang, Y. X.; Huang, F. W.; Sheng, W. L.; Miao, X.; Li, X.; Gu, X. K.; Lang, X. J. Blue light photocatalytic oxidation of sulfides to sulfoxides with oxygen over a thiazole-linked 2D covalent organic framework. Appl. Catal. B: Environ. 2023, 338, 123070.

[26]

Liao, Q. B.; Wang, D. N.; Ke, C.; Zhang, Y. Y.; Han, Q. W.; Zhang, Y. F.; Xi, K. Metal-free Fenton-like photocatalysts based on covalent organic frameworks. Appl. Catal. B: Environ. 2021, 298, 120548.

[27]

Wang, G. B.; Xu, H. P.; Xie, K. H.; Kan, J. L.; Fan, J. Z.; Wang, Y. J.; Geng, Y.; Dong, Y. B. A covalent organic framework constructed from a donor–acceptor–donor motif monomer for photocatalytic hydrogen evolution from water. J. Mater. Chem. A 2023, 11, 4007–4012.

[28]

Yang, H.; Hao, M. J.; Xie, Y. H.; Liu, X. L.; Liu, Y. F.; Chen, Z. S.; Wang, X. K.; Waterhouse, G. I. N.; Ma, S. Q. Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction. Angew. Chem., Int. Ed. 2023, 62, e202303129.

[29]

Li, J. J.; Gao, S. Y.; Liu, J. Y.; Ye, S. H.; Feng, Y. N.; Si, D. H.; Cao, R. Use in photoredox catalysis of stable donor–acceptor covalent organic frameworks and membrane strategy. Adv. Funct. Mater. 2023, 33, 2305735.

[30]
Song, D. M.; Xu, W. H.; Li, J.; Zhao, J. L.; Shi, Q.; Li, F.; Sun, X. Z.; Wang, N. “All-in-one” covalent organic framework for photocatalytic CO2 reduction. Chin. J. Catal. 2022 , 43, 2425–2433.
DOI
[31]

Mi, Z.; Zhou, T.; Weng, W. J.; Unruangsri, J.; Hu, K.; Yang, W. L.; Wang, C. C.; Zhang, K. A. I.; Guo, J. Covalent organic frameworks enabling site isolation of viologen-derived electron-transfer mediators for stable photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 9642–9649.

[32]

Guan, X. Y.; Qian, Y. Y.; Zhang, X. Y.; Jiang, H. L. Enaminone-linked covalent organic frameworks for boosting photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2023, 62, e202306135.

[33]

Lin, C. X.; Liu, X. L.; Yu, B. Q.; Han, C. Z.; Gong, L.; Wang, C. M.; Gao, Y.; Bian, Y. Z.; Jiang, J. Z. Rational modification of two-dimensional donor–acceptor covalent organic frameworks for enhanced visible light photocatalytic activity. ACS Appl. Mater. Interfaces 2021, 13, 27041–27048.

[34]

Liu, Y.; Jiang, X. Y.; Chen, L. K.; Cui, Y.; Li, Q. Y.; Zhao, X. S.; Han, X. G.; Zheng, Y. C.; Wang, X. J. Rational design of a phenothiazine-based donor–acceptor covalent organic framework for enhanced photocatalytic oxidative coupling of amines and cyclization of thioamides. J. Mater. Chem. A 2023, 11, 1208–1215.

[35]

Wang, M.; Wang, Z.; Shan, M. D.; Wang, J. F.; Qiu, Z. X.; Song, J. J.; Li, Z. Fluorine-substituted donor–acceptor covalent organic frameworks for efficient photocatalyst hydrogen evolution. Chem. Mater. 2023, 35, 5368–5377.

[36]

Chen, W. B.; Wang, L.; Mo, D. Z.; He, F.; Wen, Z. L.; Wu, X. J.; Xu, H. X.; Chen, L. Modulating benzothiadiazole-based covalent organic frameworks via halogenation for enhanced photocatalytic water splitting. Angew. Chem., Int. Ed. 2020, 59, 16902–16909.

[37]

Li, Z. P.; Deng, T. Q.; Ma, S.; Zhang, Z. W.; Wu, G.; Wang, J.; Li, Q. A.; Xia, H.; Yang, S. W.; Liu, X. M. Three-component donor–π–acceptor covalent-organic frameworks for boosting photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2023, 145, 8364–8374.

[38]

Huang, S. D.; Zhang, B. Y.; Wu, D. S.; Xu, Y. F.; Hu, H. Y.; Duan, F.; Zhu, H.; Du, M. L.; Lu, S. L. Linkage engineering in covalent organic frameworks as metal-free oxygen reduction electrocatalysts for hydrogen peroxide production. Appl. Catal. B: Environ. 2024, 340, 123216.

[39]

Han, C. Z.; Xiang, S. H.; Jin, S. L.; Zhang, C.; Jiang, J. X. Rational design of conjugated microporous polymer photocatalysts with definite D–π–A structures for ultrahigh photocatalytic hydrogen evolution activity under natural sunlight. ACS Catal. 2023, 13, 204–212.

[40]

Ma, S.; Deng, T. Q.; Li, Z. P.; Zhang, Z. W.; Jia, J.; Li, Q. Z.; Wu, G.; Xia, H.; Yang, S. W.; Liu, X. M. Photocatalytic hydrogen production on a sp2-carbon-linked covalent organic framework. Angew. Chem., Int. Ed. 2022, 61, e202208919.

[41]

Chai, J. D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.

[42]

Benatto, L.; Koehler, M. Effects of fluorination on exciton binding energy and charge transport of π-conjugated donor polymers and the ITIC molecular acceptor: A theoretical study. J. Phys. Chem. C 2019, 123, 6395–6406.

[43]

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

[44]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[45]

Lei, Z. D.; Yang, Q. S.; Xu, Y.; Guo, S. Y.; Sun, W. W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 2018, 9, 576.

[46]

Giri, A.; Shreeraj, G.; Dutta, T. K.; Patra, A. Transformation of an imine cage to a covalent organic framework film at the liquid–liquid interface. Angew. Chem., Int. Ed. 2023, 62, e202219083.

[47]

Wu, K.; Liu, X. Y.; Cheng, P. W.; Huang, Y. L.; Zheng, J.; Xie, M.; Lu, W. G.; Li, D. Linker engineering for reactive oxygen species generation efficiency in ultra-stable nickel-based metal-organic frameworks. J. Am. Chem. Soc. 2023, 145, 18931–18938.

[48]

Zhang, H. L.; Lin, Z.; Kidkhunthod, P.; Guo, J. Stable immobilization of nickel ions on covalent organic frameworks for panchromatic photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202217527.

[49]

Li, W.; Ding, X.; Yu, B. Q.; Wang, H. L.; Gao, Z.; Wang, X. X.; Liu, X. L.; Wang, K.; Jiang, J. Z. tuning molecular chromophores of isoreticular covalent organic frameworks for visible light-induced hydrogen generation. Adv. Funct. Mater. 2022, 32, 2207394.

[50]

Li, S. Z.; Hu, L. L.; Qian, Z. F.; Yin, J.; Tang, J. T.; Pan, C. Y.; Yu, G. P.; Zhang, K. A. I. Covalent triazine frameworks with unidirectional electron transfer for enhanced photocatalytic oxidation reactions. ACS Catal. 2023, 13, 12041–12047.

[51]

Shen, R. C.; Liang, G. J.; Hao, L.; Zhang, P.; Li, X. In situ synthesis of chemically bonded 2D/2D covalent organic frameworks/o-vacancy WO3 Z-scheme heterostructure for photocatalytic overall water splitting. Adv. Mater. 2023, 35, 2303649

[52]

Hao, L.; Huang, H. W.; Zhang, Y. H.; Ma, T. Y. Oxygen vacant semiconductor photocatalysts. Adv. Funct. Mater. 2021, 31, 2100919.

[53]

Meng, F. Y.; Wang, J.; Chen, M. H.; Wang, Z. G.; Bai, G. Y.; Lan, X. W. Extending the π-conjugated system in conjugated microporous polymers to modulate excitonic effects for metal-free selective CO2 photoreduction to CH4. ACS Catal. 2023, 13, 12142–12152.

File
6509_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 December 2023
Revised: 21 January 2024
Accepted: 21 January 2024
Published: 22 March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22201063 and U21A2085), Science and Technology Research and Development Plan Joint Fund of Henan Province (No. 225200810083), Science and Technology Research and Development Program of Henan Province (No. 232102230083), High-level talents international training project of Henan Province (K2306Y), Project of Scientific and Technological Innovation Team in University of Henan Province, China (No. 20IRTSTHN001), and the Zhongyuan High-Level Talents Special Support Plan of China (No. 204200510009). Y. S. L. gratefully acknowledges financial support from the Zhongyuan Youthful Postdoctoral Innovative Talent Program of Henan Province, China.

Return