AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ fabrication of on-chip 1T'-MoTe2/Ge Schottky junction photodetector for self-powered broadband infrared imaging and position sensing

Menglei Zhu1Kunxuan Liu2Di Wu1( )Yunrui Jiang2Xue Li1Pei Lin1Zhifeng Shi1Xinjian Li1Ran Ding3Yalun Tang2Xuechao Yu4Longhui Zeng1( )
School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Show Author Information

Graphical Abstract

A 1T’-MoTe2/Ge Schottky junction photodetector has been in-situ fabricated for high-sensitive broadband infrared detection, imaging and position sensing.

Abstract

High-sensitivity room-temperature multi-dimensional infrared (IR) detection is crucial for military and civilian purposes. Recently, the gapless electronic structures and unique optoelectrical properties have made the two-dimensional (2D) topological semimetals promising candidates for the realization of multifunctional optoelectronic devices. Here, we demonstrated the in-situ construction of high-performance 1T’-MoTe2/Ge Schottky junction device by inserting an ultrathin AlOx passivation layer. The good detection performance with an ultra-broadband detection wavelength range of up to 10.6 micron, an ultrafast response time of ~ 160 ns, and a large specific detectivity of over 109 Jones in mid-infrared (MIR) range surpasses that of most 2D materials-based IR sensors, approaching the performance of commercial IR photodiodes. The on-chip integrated device arrays with 64 functional detectors feature high-resolution imaging capability at room temperature. All these outstanding detection features have enabled the demonstration of position-sensitive detection applications. It demonstrates an exceptional position sensitivity of 14.9 mV/mm, an outstanding nonlinearity of 6.44%, and commendable trajectory tracking and optoelectronic demodulation capabilities. This study not only offers a promising route towards room-temperature MIR optoelectronic applications, but also demonstrates a great potential for application in optical sensing systems.

Electronic Supplementary Material

Download File(s)
12274_2024_6510_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light: Sci. Appl. 2021, 10, 123.

[2]

Wang, F. K.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, 1901347.

[3]

Wang, P.; Xia, H.; Li, Q.; Wang, F.; Zhang, L. L.; Li, T. X.; Martyniuk, P.; Rogalski, A.; Hu, W. D. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Small 2019, 15, 1904396.

[4]

Yao, J. D.; Yang, G. W. 2D material broadband photodetectors. Nanoscale 2020, 12, 454–476.

[5]

Bao, Q. L.; Loh, K. P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6, 3677–3694.

[6]

Wang, W. H.; Yan, Z. Z.; Zhang, J. F.; Lu, J. P.; Qin, H.; Ni, Z. H. High-performance position-sensitive detector based on graphene-silicon heterojunction. Optica 2018, 5, 27–31.

[7]

Wang, W. H.; Lu, J. P.; Ni, Z. H. Position-sensitive detectors based on two-dimensional materials. Nano Res. 2021, 14, 1889–1900.

[8]

Zhong, F.; Wang, H.; Wang, Z.; Wang, Y.; He, T.; Wu, P. S.; Peng, M.; Wang, H. L.; Xu, T. F.; Wang, F. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Res. 2021, 14, 1840–1862.

[9]

Piotrowski, J.; Rogalski, A. Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 2004, 46, 115–131.

[10]

Rogalski, A. New material systems for third generation infrared photodetectors. Opto-Electron. Rev. 2008, 16, 458–482.

[11]

Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

[12]

Wang, H. Y.; Li, Z. X.; Li, D. Y.; Chen, P.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater. 2021, 31, 2103106.

[13]

Liu, J.; Xia, F. N.; Xiao, D.; García de Abajo, F. J.; Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 2020, 19, 830–837.

[14]

Zeng, L. H.; Han, W.; Ren, X. Y.; Li, X.; Wu, D.; Liu, S. J.; Wang, H.; Lau, S. P.; Tsang, Y. H.; Shan, C. X. et al. Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 Dirac semimetal. Nano Lett. 2023, 23, 8241–8248.

[15]

Wu, Y. P.; Wu, S. E.; Hei, J. J.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Chen, Q. M.; Li, X. J.; Yu, X. C.; Wu, D. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging. Nano Res. 2023, 16, 11422–11429.

[16]

Wu, D.; Xu, M. M.; Zeng, L. H.; Shi, Z. F.; Tian, Y. Z.; Li, X. J.; Shan, C. X.; Jie, J. S. In situ fabrication of PdSe2/GaN schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 2022, 16, 5545–5555.

[17]

Wu, D.; Tian, R.; Lin, P.; Shi, Z. F.; Chen, X.; Jia, M. C.; Tian, Y. T.; Li, X. J.; Zeng, L. H.; Jie, J. S. Wafer-scale synthesis of wide bandgap 2D GeSe2 layers for self-powered ultrasensitive UV photodetection and imaging. Nano Energy 2022, 104, 107972.

[18]

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.

[19]

Wu, D.; Guo, C. G.; Zeng, L. H.; Ren, X. Y.; Shi, Z. F.; Wen, L.; Chen, Q.; Zhang, M.; Li, X. J.; Shan, C. X. et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light: Sci. Appl. 2023, 12, 5.

[20]

Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G. B.; Ma, Y. M.; Wu, D.; Jie, J. S. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.

[21]

Lai, J. W.; Liu, X.; Ma, J. C.; Wang, Q. S.; Zhang, K. N.; Ren, X.; Liu, Y. N.; Gu, Q. Q.; Zhuo, X.; Lu, W. et al. Anisotropic broadband photoresponse of layered type-II weyl semimetal MoTe2. Adv. Mater. 2018, 30, 1707152.

[22]

Maiti, R.; Patil, C.; Saadi, M. A. S. R.; Xie, T.; Azadani, J. G.; Uluutku, B.; Amin, R.; Briggs, A. F.; Miscuglio, M.; Van Thourhout, D. et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics 2020, 14, 578–584.

[23]

Zhou, Z. W.; Song, Q.; Xu, Y. F.; Liang, H. W.; Zhang, M.; Zhang, B.; Yan, P. G. Magnetron sputtering deposited large-scale Weyl semimetal THz detector. Infrared Phys. Technol. 2022, 121, 104060.

[24]

Chen, W. J.; Liang, R. R.; Zhang, S. Q.; Liu, Y.; Cheng, W. J.; Sun, C. C.; Xu, J. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res. 2020, 13, 127–132.

[25]

Xie, C.; Wang, Y.; Zhang, Z. X.; Wang, D.; Luo, L. B. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today 2018, 19, 41–83.

[26]

Yang, W. H.; Jiang, X. Y.; Xiao, Y. T.; Fu, C.; Wan, J. K.; Yin, X.; Tong, X. W.; Wu, D.; Chen, L. M.; Luo, L. B. Detection of wavelength in the range from ultraviolet to near infrared light using two parallel PtSe2/thin Si Schottky junctions. Mater. Horiz. 2021, 8, 1976–1984.

[27]

Goykhman, I.; Sassi, U.; Desiatov, B.; Mazurski, N.; Milana, S.; de Fazio, D.; Eiden, A.; Khurgin, J.; Shappir, J.; Levy, U. et al. On-chip integrated, silicon-graphene plasmonic schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 2016, 16, 3005–3013.

[28]

Mao, J.; Zhang, B. C.; Shi, Y. H.; Wu, X. F.; He, Y. Y.; Wu, D.; Jie, J. S.; Lee, C. S.; Zhang, X. H. Conformal MoS2/silicon nanowire array heterojunction with enhanced light trapping and effective interface passivation for ultraweak infrared light detection. Adv. Funct. Mater. 2022, 32, 2108174.

[29]

Martin, A. A.; Calta, N. P.; Khairallah, S. A.; Wang, J.; Depond, P. J.; Fong, A. Y.; Thampy, V.; Guss, G. M.; Kiss, A. M.; Stone, K. H. et al. Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nat. Commun. 2019, 10, 1987.

[30]

Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129.

[31]

Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

[32]

Lee, C. H.; Park, Y.; Youn, S.; Yeom, M. J.; Kum, H. S.; Chang, J.; Heo, J.; Yoo, G. Design of p-WSe2/n-Ge heterojunctions for high-speed broadband photodetectors. Adv. Funct. Mater. 2022, 32, 2107992.

[33]

Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53–60.

[34]

Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.

[35]

Jiao, H. X.; Wang, X. D.; Chen, Y.; Guo, S. F.; Wu, S. Q.; Song, C. Y.; Huang, S. Y.; Huang, X. N.; Tai, X. C.; Lin, T. et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci. Adv. 2022, 8, eabn1811.

[36]

Chen, Y. F.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X. L.; Ye, J. F.; Chen, Y.; Xie, R. Z.; Zhou, Y. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 2021, 4, 357–363.

[37]

Chi, S. M.; Li, Z. L.; Xie, Y.; Zhao, Y. G.; Wang, Z. Y.; Li, L.; Yu, H. H.; Wang, G.; Weng, H. M.; Zhang, H. J. et al. A wide-range photosensitive Weyl semimetal single crystal-TaAs. Adv. Mater. 2018, 30, 1801372.

[38]

Xie, Y.; Zhang, B.; Wang, S. X.; Wang, D.; Wang, A. Z.; Wang, Z. Y.; Yu, H. H.; Zhang, H. J.; Chen, Y. X.; Zhao, M. W. et al. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm. Adv. Mater. 2017, 29, 1605972.

[39]

Yao, J. R.; Chen, F. F.; Li, J. J.; Du, J. L.; Wu, D.; Tian, Y. T.; Zhang, C.; Yang, J. K.; Li, X. J.; Lin, P. A high-performance short-wave infrared phototransistor based on a 2D tellurium/MoS2 van der Waals heterojunction. J. Mater. Chem. C 2021, 9, 13123–13131.

[40]

Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 2018, 12, 7253–7263.

[41]

Bullock, J.; Amani, M.; Cho, J.; Chen, Y. Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. L. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607.

[42]

Tian, Z. B.; Krishna, S. Mid-infrared metamorphic interband cascade photodetectors on GaAs substrates. Appl. Phys. Lett. 2015, 107, 211114.

[43]

Yin, C. J.; Gong, C. H.; Chu, J. W.; Wang, X. D.; Yan, C. Y.; Qian, S. F.; Wang, Y.; Rao, G. F.; Wang, H. B.; Liu, Y. Q. et al. Ultrabroadband photodetectors up to 10.6 µm based on 2D Fe3O4 nanosheets. Adv. Mater. 2020, 32, 2002237.

[44]

Harrer, A.; Schwarz, B.; Schuler, S.; Reininger, P.; Wirthmüller, A.; Detz, H.; MacFarland, D.; Zederbauer, T.; Andrews, A. M.; Rothermund, M. et al. 4.3 μm quantum cascade detector in pixel configuration. Opt. Express 2016, 24, 17041–17049

[45]

Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

[46]

Chen, C. H.; Yi, X. J.; Zhang, J.; Zhao, X. R. Linear uncooled microbolometer array based on VO x thin films. Infrared Phys. Technol. 2001, 42, 87–90.

[47]

Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519.

[48]

Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

[49]

Chen, X. X.; Yang, X.; Lou, Q.; Tian, Y. Z.; Liu, Z. Y.; Lv, C. F.; Chen, Y. C.; Dong, L.; Shan, C. X. Ultrasensitive broadband position-sensitive detector based on graphitic carbon nitride. Nano Res. 2023, 16, 1277–1285.

[50]

Cong, R. D.; Qiao, S.; Liu, J. H.; Mi, J. S.; Yu, W.; Liang, B. L.; Fu, G. S.; Pan, C. F.; Wang, S. F. Ultrahigh, ultrafast, and self-powered visible-near-infrared optical position-sensitive detector based on a CVD-prepared vertically standing few-layer MoS2/Si heterojunction. Adv. Sci. 2018, 5, 1700502.

[51]

Fortunato, E.; Lavareda, G.; Martins, R.; Soares, F.; Fernandes, L. Large-area 1D thin-film position-sensitive detector with high detection resolution. Sens. Actuators A: Phys. 1995, 51, 135–142.

[52]

Henry, J.; Livingstone, J. Thin-film amorphous silicon position-sensitive detectors. 3.0.CO;2-I">Adv. Mater. 2001, 13, 1022–1026.

[53]

Hu, C.; Wang, X. J.; Song, B. High-performance position-sensitive detector based on the lateral photoelectrical effect of two-dimensional materials. Light: Sci. Appl. 2020, 9, 88.

[54]

Zhou, G. D.; Sun, B.; Hu, X. F.; Sun, L. F.; Zou, Z.; Xiao, B.; Qiu, W. K.; Wu, B.; Li, J.; Han, J. J. et al. Negative photoconductance effect: An extension function of the TiO x -based memristor. Adv. Sci. 2021, 8, 2003765.

Nano Research
Pages 5587-5594
Cite this article:
Zhu M, Liu K, Wu D, et al. In-situ fabrication of on-chip 1T'-MoTe2/Ge Schottky junction photodetector for self-powered broadband infrared imaging and position sensing. Nano Research, 2024, 17(6): 5587-5594. https://doi.org/10.1007/s12274-024-6510-z
Topics:

1887

Views

5

Crossref

2

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 23 December 2023
Revised: 11 January 2024
Accepted: 21 January 2024
Published: 29 February 2024
© Tsinghua University Press 2024
Return