Silicon (Si) is considered a potential alternative anode for next-generation Li-ion batteries owing to its high theoretical capacity and abundance. However, the commercial use of Si anodes is hindered by their large volume expansion (~ 300%). Numerous efforts have been made to address this issue. Among these efforts, Si-graphite co-utilization has attracted attention as a reasonable alternative for high-energy anodes. A comparative study of representative commercial Si-based materials, such as Si nanoparticles, Si suboxides, and Si−Graphite composites (SiGC), was conducted to characterize their overall performance in high-energy lithium-ion battery (LIB) design by incorporating conventional graphite. Nano-Si was found to exhibit poor electrochemical performance, with severe volume expansion during cycling. Si suboxide provided excellent cycling stability in a full-cell evaluation with stable volume variation after 50 cycles, but had a large irreversible capacity and remarkable volume expansion during the first cycle. SiGC displayed a good initial Coulombic efficiency and the lowest volume change in the first cycle owing to the uniformly distributed nano-Si layer on graphite; however, its long-term cycling stability was relatively poor. To complement each disadvantage of Si suboxide and SiGC, a new combination of these Si-based anodes was suggested and a reasonable improvement in overall battery performance was successfully achieved.
Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.
Jiang, M. M.; Chen, J. L.; Zhang, Y. B.; Song, N.; Jiang, W.; Yang, J. P. Assembly: A key enabler for the construction of superior silicon-based anodes. Adv. Sci. 2022, 9, 2203162.
Ko, M.; Chae, S.; Cho, J. Challenges in accommodating volume change of Si anodes for Li-ion batteries. ChemElectroChem 2015, 2, 1645–1651.
Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 13–24.
Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. 2008, 120, 10305–10308.
Shi, F. F.; Song, Z. C.; Ross, P. N.; Somorjai, G. A.; Ritchie, R. O.; Komvopoulos, K. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nat. Commun. 2016, 7, 11886.
McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013, 25, 4966–4985.
Zhang, F. Z.; Ma, Y. Y.; Jiang, M. M.; Luo, W.; Yang, J. P. Boron heteroatom-doped silicon-carbon peanut-like composites enables long life lithium-ion batteries. Rare Met. 2022, 41, 1276–1283.
Lin, D. C.; Lu, Z. D.; Hsu, P. C.; Lee, H. R.; Liu, N.; Zhao, J.; Wang, H. T.; Liu, C.; Cui, Y. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 2015, 8, 2371–2376.
Li, P.; Kim, H.; Myung, S. T.; Sun, Y. K. Diverting exploration of silicon anode into practical way: A review focused on silicon-graphite composite for lithium ion batteries. Energy Storage Mater. 2021, 35, 550–576.
Yang, Y. J.; Wu, S. X.; Zhang, Y. P.; Liu, C. B.; Wei, X. J.; Luo, D.; Lin, Z. Towards efficient binders for silicon based lithium-ion battery anodes. Chem. Eng. J. 2021, 406, 126807.
Son, Y.; Sim, S.; Ma, H.; Choi, M.; Son, Y.; Park, N.; Cho, J.; Park, M. Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes. Adv. Mater. 2018, 30, 1705430.
Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.
Chen, H.; Wu, Z. Z.; Su, Z.; Chen, S.; Yan, C.; Al-Mamun, M.; Tang, Y. B.; Zhang, S. Q. A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 2021, 81, 105654.
Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.
Huang, X.; Yu, H.; Chen, J.; Lu, Z. Y.; Yazami, R.; Hng, H. H. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration. Adv. Mater. 2014, 26, 1296–1303.
Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.
Son, Y.; Kim, N.; Lee, T.; Lee, Y.; Ma, J.; Chae, S.; Sung, J.; Cha, H.; Yoo, Y.; Cho, J. Calendering-compatible macroporous architecture for silicon-graphite composite toward high-energy lithium-ion batteries. Adv. Mater. 2020, 32, 2003286.
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.
Zhu, G. J.; Guo, R.; Luo, W.; Liu, H. K.; Jiang, W.; Dou, S. X.; Yang, J. P. Boron doping-induced interconnected assembly approach for mesoporous silicon oxycarbide architecture. Natl. Sci. Rev. 2021, 8, nwaa152.
Jia, H. P.; Li, X. L.; Song, J. H.; Zhang, X.; Luo, L. L.; He, Y.; Li, B. S.; Cai, Y.; Hu, S. Y.; Xiao, X. C. et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 2020, 11, 1474.
Xu, Q.; Sun, J. K.; Yin, Y. X.; Guo, Y. G. Facile synthesis of blocky SiO x /C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 2018, 28, 1705235.
Sung, J.; Ma, J.; Choi, S. H.; Hong, J.; Kim, N.; Chae, S.; Son, Y.; Kim, S. Y.; Cho, J. Fabrication of lamellar nanosphere structure for effective stress-management in large-volume-variation anodes of high-energy lithium-ion batteries. Adv. Mater. 2019, 31, 1900970.
Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 2020, 4, 5387–5416.
Wang, J.; Zhao, H. L.; He, J. C.; Wang, C. M.; Wang, J. Nano-sized SiO x /C composite anode for lithium ion batteries. J. Power Sources 2011, 196, 4811–4815.
Chen, T.; Wu, J.; Zhang, Q. L.; Su, X. Recent advancement of SiO x based anodes for lithium-ion batteries. J. Power Sources 2017, 363, 126–144.
Lee, S. J.; Kim, H. J.; Hwang, T. H.; Choi, S.; Park, S. H.; Deniz, E.; Jung, D. S.; Choi, J. W. Delicate structural control of Si-SiO x -C composite via high-speed spray pyrolysis for Li-Ion battery anodes. Nano Lett. 2017, 17, 1870–1876.
Chae, S.; Ko, M.; Park, S.; Kim, N.; Ma, J.; Cho, J. Micron-sized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries. Energy Environ. Sci. 2016, 9, 1251–1257.
Miyachi, M.; Yamamoto, H.; Kawai, H.; Ohta, T.; Shirakata, M. Analysis of SiO anodes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A2089.
Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H. W.; Cui, Y.; Cho, J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 2016, 1, 16113.
Chae, S.; Kim, N.; Ma, J.; Cho, J.; Ko, M. One-to-one comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1700071.
Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 110–135.
Kim, N.; Chae, S.; Ma, J.; Ko, M.; Cho, J. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat. Commun. 2017, 8, 812.
Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162.
Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 2017, 1, 47–60.
Li, Z. H.; Zhang, Y. P.; Liu, T. F.; Gao, X. H.; Li, S. Y.; Ling, M.; Liang, C. D.; Zheng, J. C.; Lin, Z. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 2020, 10, 1903110.
Liu, Q.; Meng, T.; Yu, L.; Guo, S. T.; Hu, Y. H.; Liu, Z. F.; Hu, X. L. Interface engineering to boost thermal safety of microsized silicon anodes in lithium-ion batteries. Small Methods 2022, 6, 2200380.
Lee, J. H.; Kim, W. J.; Kim, J. Y.; Lim, S. H.; Lee, S. M. Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. J. Power Sources 2008, 176, 353–358.
Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531.
He, Y.; Jiang, L.; Chen, T. W.; Xu, Y. B.; Jia, H. P.; Yi, R.; Xue, D. C.; Song, M.; Genc, A.; Bouchet-Marquis, C. et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading. Nat. Nanotechnol. 2021, 16, 1113–1120.