Journal Home > Online First

Injectability empowers conductive hydrogels to transcend traditional limitations, unlocking a realm of possibilities for innovative medical, wearable, and therapeutic applications that can significantly enhance patient care and quality of life. Here, we report an injectable, self-healable, and reusable hydrogel obtained by mixing the concentrated poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) suspension (~ 2 wt.% solid content), polyvinyl alcohol (PVA), and borax. Leveraging the presence of reversible borax/hydroxyl bonds and multiple hydrogen bonds, this PEDOT:PSS/PVA hydrogel exhibits notable shear-thinning behavior and self-healing capabilities, enabling it to be injected as a gel fiber from a syringe. As-prepared injectable hydrogel also demonstrates an ultra-low modulus (~ 2.5 MPa), reduced on-skin impedance (~ 45% of commercial electrodes), and high signal-to-noise ratio (SNR) (~ 15–22 dB) in recording of electrocardiography (ECG), electromyography (EMG), and electroencephalogram (EEG) signals. Furthermore, the injectable hydrogels can be remolded and reinjected as the reusable electrodes, maintaining nearly identical electrophysiological recording capabilities and brain–computer interface (BCI) performance compared to commercial wet electrodes. With their straightforward fabrication, excellent material properties and electronic performance, ease of cleaning, and remarkable reusability, our injectable PEDOT:PSS/PVA hydrogels hold promise for advancements in BCI based electronics and wearable bioelectronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An injectable, self-healable, and reusable PEDOT:PSS/PVA hydrogel patch electrode for epidermal electronics

Show Author's information Yang Li1,2,§( )Yuzhe Gu1,§Sheng Qian2Shuwen Zheng1Yuncong Pang2Lele Wang1Baoguang Liu1Shujuan Liu2( )Qiang Zhao1,2( )
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China

§ Yang Li and Yuzhe Gu contributed equally to this work.

Abstract

Injectability empowers conductive hydrogels to transcend traditional limitations, unlocking a realm of possibilities for innovative medical, wearable, and therapeutic applications that can significantly enhance patient care and quality of life. Here, we report an injectable, self-healable, and reusable hydrogel obtained by mixing the concentrated poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) suspension (~ 2 wt.% solid content), polyvinyl alcohol (PVA), and borax. Leveraging the presence of reversible borax/hydroxyl bonds and multiple hydrogen bonds, this PEDOT:PSS/PVA hydrogel exhibits notable shear-thinning behavior and self-healing capabilities, enabling it to be injected as a gel fiber from a syringe. As-prepared injectable hydrogel also demonstrates an ultra-low modulus (~ 2.5 MPa), reduced on-skin impedance (~ 45% of commercial electrodes), and high signal-to-noise ratio (SNR) (~ 15–22 dB) in recording of electrocardiography (ECG), electromyography (EMG), and electroencephalogram (EEG) signals. Furthermore, the injectable hydrogels can be remolded and reinjected as the reusable electrodes, maintaining nearly identical electrophysiological recording capabilities and brain–computer interface (BCI) performance compared to commercial wet electrodes. With their straightforward fabrication, excellent material properties and electronic performance, ease of cleaning, and remarkable reusability, our injectable PEDOT:PSS/PVA hydrogels hold promise for advancements in BCI based electronics and wearable bioelectronics.

Keywords: self-healing, injectability, brain–computer interface, electrophysiological recording, epidermal hydrogel electrodes, reusability

References(55)

[1]

Jiang, Y.; Ji, S. B.; Sun, J.; Huang, J. P.; Li, Y. H.; Zou, G. J.; Salim, T.; Wang, C. X.; Li, W. L.; Jin, H. R. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 2023, 614, 456–462.

[2]

Zhao, Y. C.; Wang, B.; Tan, J. W.; Yin, H. X.; Huang, R. Y.; Zhu, J. L.; Lin, S. Y.; Zhou, Y.; Jelinek, D.; Sun, Z. Y. et al. Soft strain-insensitive bioelectronics featuring brittle materials. Science 2022, 378, 1222–1227.

[3]

Li, G.; Huang, K. X.; Deng, J.; Guo, M. X.; Cai, M. K.; Zhang, Y.; Guo, C. F. Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 2022, 34, 2200261.

[4]
Feng, T. X.; Ling, D.; Li, C. Y.; Zheng, W. T.; Zhang, S. C.; Li, C.; Emel’yanov, A.; Pozdnyakov, A. S.; Lu, L. J.; Mao, Y. C. Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res., in press, https://doi.org/10.1007/s12274-023-6365-8.
DOI
[5]

Li, J.; Carlos, C.; Zhou, H.; Sui, J. J.; Wang, Y. K.; Silva-Pedraza, Z.; Yang, F.; Dong, Y. T.; Zhang, Z. Y.; Hacker, T. A. et al. Stretchable piezoelectric biocrystal thin films. Nat. Commun. 2023, 14, 6562.

[6]

Wang, C. Y.; Wang, H. Y.; Wang, B. H.; Miyata, H.; Wang, Y.; Nayeem, M. O. G.; Kim, J. J.; Lee, S.; Yokota, T.; Onodera, H. et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv. 2022, 8, eabo1396.

[7]

Xu, Z. Y.; Qiao, X. J.; Tao, R. Z.; Li, Y. X.; Zhao, S. J.; Cai, Y. C.; Luo, X. L. A wearable sensor based on multifunctional conductive hydrogel for simultaneous accurate pH and tyrosine monitoring in sweat. Biosens. Bioelectron. 2023, 234, 115360.

[8]

Kim, M.; Um, H. K.; Choi, H.; Lee, J. S.; Kim, J.; Kim, K.; Noh, E.; Han, M.; Lee, H. W.; Choi, W. I. et al. Stretchable and biocompatible transparent electrodes for multimodal biosignal sensing from exposed skin. Adv. Electron. Mater. 2023, 9, 2300075.

[9]

Bian, Z. Y.; Li, Y. H.; Sun, H. L.; Shi, M. Y.; Zheng, Y. J.; Liu, H.; Liu, C. T.; Shen, C. Y. Transparent, intrinsically stretchable cellulose nanofiber-mediated conductive hydrogel for strain and humidity sensing. Carbohydr. Polym. 2023, 301, 120300.

[10]

Hsieh, J. C.; Alawieh, H.; Li, Y.; Iwane, F.; Zhao, L. R.; Anderson, R.; Abdullah, S. I.; Kevin Tang, K. W.; Wang, W. L.; Pyatnitskiy, I. et al. A highly stable electrode with low electrode-skin impedance for wearable brain–computer interface. Biosens. Bioelectron. 2022, 218, 114756.

[11]

Li, M.; Li, W. J.; Guan, Q. W.; Lv, J.; Wang, Z. H.; Ding, L.; Li, C.; Saiz, E.; Hou, X. Sweat-resistant bioelectronic skin sensor. Device 2023, 1, 100006.

[12]
Li, J. L.; Liu, Z. H.; Tang, Y. T.; Xian, J. B.; He, C. F.; Wu, H.; Liu, M. J.; Li, F. Y. An interfacial gel electrode patch with tunable hydrogen bond network for electromyographic sensing and discrimination. CCS Chem., in press, https://doi.org/10.31635/ccschem.023.202202564.
DOI
[13]

Yuk, H.; Wu, J. J.; Zhao, X. H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 2022, 7, 935–952.

[14]

Zhou, T.; Yuk, H.; Hu, F. Q.; Wu, J. J.; Tian, F. J.; Roh, H.; Shen, Z. Q.; Gu, G. Y.; Xu, J. K.; Lu, B. Y. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 2023, 22, 895–902

[15]

Hu, L. X.; Chee, P. L.; Sugiarto, S.; Yu, Y.; Shi, C. Q.; Yan, R.; Yao, Z. Q.; Shi, X. W.; Zhi, J. C.; Kai, D. et al. Hydrogel-based flexible electronics. Adv. Mater. 2023, 35, 2205326.

[16]

Tang, X.; Shen, H.; Zhao, S. Y.; Li, N.; Liu, J. Flexible brain–computer interfaces. Nat. Electron. 2023, 6, 109–118.

[17]

Vashahi, F.; Martinez, M. R.; Dashtimoghadam, E.; Fahimipour, F.; Keith, A. N.; Bersenev, E. A.; Ivanov, D. A.; Zhulina, E. B.; Popryadukhin, P.; Matyjaszewski, K. et al. Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Sci. Adv. 2022, 8, eabm2469.

[18]

Yu, C. J.; Yue, Z. W.; Zhang, H.; Shi, M. Y.; Yao, M. M.; Yu, Q. Y.; Liu, M.; Guo, B. Y.; Zhang, H. T.; Tian, L. Q. et al. Ultra-histocompatible and electrophysiological-adapted PEDOT-based hydrogels designed for cardiac repair. Adv. Funct. Mater. 2023, 33, 2211023.

[19]

Hui, Y.; Yao, Y.; Qian, Q. L.; Luo, J. H.; Chen, H. H.; Qiao, Z.; Yu, Y. T.; Tao, L.; Zhou, N. J. Three-dimensional printing of soft hydrogel electronics. Nat. Electron. 2022, 5, 893–903.

[20]

Chen, K.; Wu, Z. H.; Liu, Y. T.; Yuan, Y.; Liu, C. S. Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment. Adv. Funct. Mater. 2022, 32, 2109687.

[21]
Li, Y.; Ding, P. P.; Gu, Y. Z.; Qian, S.; Pang, Y. C.; Wang, L. L.; Feng, J. Y.; Liu, B. G.; Wan, Q.; Li, P. et al. Self-healable gels in electrochemical energy storage devices. Nano Res., in press, https://doi.org/10.1007/s12274-023-6063-6.
DOI
[22]

Donahue, M. J.; Sanchez-Sanchez, A.; Inal, S.; Qu, J.; Owens, R. M.; Mecerreyes, D.; Malliaras, G. G.; Martin, D. C. Tailoring PEDOT properties for applications in bioelectronics. Mater. Sci. Eng. R: Rep. 2020, 140, 100546.

[23]

Zhang, S. M.; Li, Y.; Tomasello, G.; Anthonisen, M.; Li, X. D.; Mazzeo, M.; Genco, A.; Grutter, P.; Cicoira, F. Tuning the electromechanical properties of PEDOT:PSS films for stretchable transistors and pressure sensors. Adv. Electron. Mater. 2019, 5, 1900191.

[24]

Li, Y.; Zhang, S. M.; Li, X. D.; Unnava, V. R. N.; Cicoira, F. Highly stretchable PEDOT:PSS organic electrochemical transistors achieved via polyethylene glycol addition. Flex. Print. Electron. 2019, 4, 044004.

[25]

Chiong, J. A.; Tran, H.; Lin, Y. J.; Zheng, Y.; Bao, Z. N. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv. Sci. 2021, 8, 2101233.

[26]

Li, Y.; Li, X. D.; Zhang, S. M.; Liu, L.; Hamad, N.; Bobbara, S. R.; Pasini, D.; Cicoira, F. Autonomic self-healing of PEDOT:PSS achieved via polyethylene glycol addition. Adv. Funct. Mater. 2020, 30, 2002853.

[27]

Li, Y.; Zhang, S. M.; Hamad, N.; Kim, K.; Liu, L.; Lerond, M.; Cicoira, F. Tailoring the self-healing properties of conducting polymer films. Macromol. Biosci. 2020, 20, 2000146.

[28]

Li, Y.; Zhou, X.; Sarkar, B.; Gagnon-Lafrenais, N.; Cicoira, F. Recent progress on self-healable conducting polymers. Adv. Mater. 2022, 34, 2108932.

[29]

Yu, C. J.; Yao, F. L.; Li, J. J. Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Acta Biomater. 2022, 139, 4–21.

[30]

Xu, Y.; Patsis, P. A.; Hauser, S.; Voigt, D.; Rothe, R.; Günther, M.; Cui, M. Y.; Yang, X. G.; Wieduwild, R.; Eckert, K. et al. Cytocompatible, injectable, and electroconductive soft adhesives with hybrid covalent/noncovalent dynamic network. Adv. Sci. 2019, 6, 1802077.

[31]

Zhang, S. M.; Chen, Y. H.; Liu, H.; Wang, Z. T.; Ling, H. N.; Wang, C. S.; Ni, J. H.; Çelebi-Saltik, B.; Wang, X. C.; Meng, X. et al. Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics. Adv. Mater. 2020, 32, 1904752.

[32]

Huang, X. X.; Chen, C. W.; Ma, X. H.; Zhu, T. S.; Ma, W. C.; Jin, Q.; Du, R. C.; Cai, Y. F.; Zhang, M. H.; Kong, D. S. et al. In situ forming dual-conductive hydrogels enable conformal, self-adhesive and antibacterial epidermal electrodes. Adv. Funct. Mater. 2023, 33, 2302846.

[33]

Shi, Y. K.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Aqueous spinning of robust, self-healable, and crack-resistant hydrogel microfibers enabled by hydrogen bond nanoconfinement. Nat. Commun. 2023, 14, 1370.

[34]

Niu, W. W.; Tian, Q.; Liu, Z. Y.; Liu, X. K. Solvent-free and skin-like supramolecular ion-conductive elastomers with versatile processability for multifunctional ionic tattoos and on-skin bioelectronics. Adv. Mater. 2023, 35, 2304157.

[35]

Tan, P.; Wang, H. F.; Xiao, F. R.; Lu, X.; Shang, W. H.; Deng, X. B.; Song, H. F.; Xu, Z. Y.; Cao, J. F.; Gan, T. S. et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 2022, 13, 358.

[36]

Ma, H. D.; Hou, J. D.; Xiao, X.; Wan, R. T.; Ge, G.; Zheng, W. Q.; Chen, C.; Cao, J.; Wang, J. Y.; Liu, C. et al. Self-healing electrical bioadhesive interface for electrophysiology recording. J. Colloid Interface Sci. 2024, 654, 639–648.

[37]

Lu, B. Y.; Yuk, H.; Lin, S. T.; Jian, N. N.; Qu, K.; Xu, J. K.; Zhao, X. H. Pure PEDOT:PSS hydrogels. Nat. Commun. 2019, 10, 1043.

[38]

Jing, X.; Li, H.; Mi, H. Y.; Liu, Y. J.; Feng, P. Y.; Tan, Y. M.; Turng, L. S. Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection. Sens. Actuators B: Chem. 2019, 295, 159–167.

[39]

Shin, M.; Shin, S. H.; Lee, M.; Kim, H. J.; Jeong, J. H.; Choi, Y. H.; Oh, D. X.; Park, J.; Jeon, H.; Eom, Y. Rheological criteria for distinguishing self-healing and non-self-healing hydrogels. Polymer 2021, 229, 123969.

[40]

Correa, S.; Grosskopf, A. K.; Lopez Hernandez, H.; Chan, D.; Yu, A. C.; Stapleton, L. M.; Appel, E. A. Translational applications of hydrogels. Chem. Rev. 2021, 121, 11385–11457.

[41]

Lu, B. L.; Lin, F. C.; Jiang, X.; Cheng, J. J.; Lu, Q. L.; Song, J. B.; Chen, C.; Huang, B. One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties. ACS Sustain. Chem. Eng. 2017, 5, 948–956.

[42]

Li, G. L.; Liu, Y.; Chen, Y. W.; Xia, Y. H.; Qi, X. M.; Wan, X.; Jin, Y.; Liu, J.; He, Q. G.; Li, K. H. et al. Robust, self-adhesive, and low-contact impedance polyvinyl alcohol/polyacrylamide dual-network hydrogel semidry electrode for biopotential signal acquisition. SmartMat 2023, 4, e1173

[43]

Ding, Y. F.; Shi, Y. F.; Yu, D.; Wang, W. All-in-one sandwich-like PVA/PEDOT:PSS/WPU electrodes with low impedance and high stretchability for ECG monitoring. Colloids Surf. A: Physicochem. Eng. Aspects 2023, 675, 132060.

[44]

McGlynn, E.; Nabaei, V.; Ren, E.; Galeote-Checa, G.; Das, R.; Curia, G.; Heidari, H. The future of neuroscience: Flexible and wireless implantable neural electronics. Adv. Sci. 2021, 8, 2002693.

[45]

Hsieh, J. C.; Li, Y.; Wang, H. Q.; Perz, M.; Tang, Q.; Tang, K. W. K.; Pyatnitskiy, I.; Reyes, R.; Ding, H.; Wang, H. L. Design of hydrogel-based wearable EEG electrodes for medical applications. J. Mater. Chem. B 2022, 10, 7260–7280.

[46]

Shen, G. C.; Zheng, K. Y.; Jiang, C. P.; Shao, S. H.; Zhao, N.; Liu, J. Q. A gelatin-based hydrogel electrode with high moisturizing ability for wearable EEG recording. IEEE Sens. J. 2023, 23, 25689–25697.

[47]

Xue, H. L.; Wang, D. Y.; Jin, M. Y.; Gao, H. B.; Wang, X. H.; Xia, L.; Li, D. A.; Sun, K.; Wang, H. N.; Dong, X. F. et al. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. Microsyst. Nanoeng. 2023, 9, 79.

[48]

Shen, G. C.; Gao, K. P.; Zhao, N.; Wang, Z. Z.; Jiang, C. P.; Liu, J. Q. A fully flexible hydrogel electrode for daily EEG monitoring. IEEE Sens. J. 2022, 22, 12522–12529.

[49]

Shen, G. C.; Gao, K. P.; Zhao, N.; Yi, Z. R.; Jiang, C. P.; Yang, B.; Liu, J. Q. A novel flexible hydrogel electrode with a strong moisturizing ability for long-term EEG recording. J. Neural Eng. 2021, 18, 066047.

[50]

Li, G. L.; Liu, Y.; Chen, Y. W.; Li, M. Z.; Song, J.; Li, K. H.; Zhang, Y. M.; Hu, L.; Qi, X. M.; Wan, X. et al. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces. J. Neural Eng. 2023, 20, 026017.

[51]

Timosina, V.; Cole, T.; Lu, H. D.; Shu, J.; Zhou, X. B.; Zhang, C. C.; Guo, J. H.; Kavehei, O.; Tang, S. Y. A non-newtonian liquid metal enabled enhanced electrography. Biosens. Bioelectron. 2023, 235, 115414.

[52]

Zhou, X.; Rajeev, A.; Subramanian, A.; Li, Y.; Rossetti, N.; Natale, G.; Lodygensky, G. A.; Cicoira, F. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes. Acta Biomater. 2022, 139, 296–306.

[53]

Yang, G. G.; Zhu, K. H.; Guo, W.; Wu, D. R.; Quan, X. L.; Huang, X.; Liu, S. Y.; Li, Y. Y.; Fang, H.; Qiu, Y. Q. et al. Adhesive and hydrophobic bilayer hydrogel enabled on-skin biosensors for high-fidelity classification of human emotion. Adv. Funct. Mater. 2022, 32, 2200457.

[54]

Du, X. J.; Yang, L. Y.; Liu, N. Recent progress on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) bioelectrodes. Small Sci. 2023, 3, 2300008.

[55]

Jastrzebska-Perfect, P.; Chowdhury, S.; Spyropoulos, G. D.; Zhao, Z. F.; Cea, C.; Gelinas, J. N.; Khodagholy, D. Translational neuroelectronics. Adv. Funct. Mater. 2020, 30, 1909165.

File
6515_ESM.pdf (5.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 December 2023
Revised: 25 January 2024
Accepted: 25 January 2024
Published: 22 March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62304112 and 62288102), Natural Science Foundation of Jiangsu Province of China (No. BK20230359), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 22KJB430038), and Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (No. NY221111).

Return