Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Injectability empowers conductive hydrogels to transcend traditional limitations, unlocking a realm of possibilities for innovative medical, wearable, and therapeutic applications that can significantly enhance patient care and quality of life. Here, we report an injectable, self-healable, and reusable hydrogel obtained by mixing the concentrated poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) suspension (~ 2 wt.% solid content), polyvinyl alcohol (PVA), and borax. Leveraging the presence of reversible borax/hydroxyl bonds and multiple hydrogen bonds, this PEDOT:PSS/PVA hydrogel exhibits notable shear-thinning behavior and self-healing capabilities, enabling it to be injected as a gel fiber from a syringe. As-prepared injectable hydrogel also demonstrates an ultra-low modulus (~ 2.5 MPa), reduced on-skin impedance (~ 45% of commercial electrodes), and high signal-to-noise ratio (SNR) (~ 15–22 dB) in recording of electrocardiography (ECG), electromyography (EMG), and electroencephalogram (EEG) signals. Furthermore, the injectable hydrogels can be remolded and reinjected as the reusable electrodes, maintaining nearly identical electrophysiological recording capabilities and brain–computer interface (BCI) performance compared to commercial wet electrodes. With their straightforward fabrication, excellent material properties and electronic performance, ease of cleaning, and remarkable reusability, our injectable PEDOT:PSS/PVA hydrogels hold promise for advancements in BCI based electronics and wearable bioelectronics.
Jiang, Y.; Ji, S. B.; Sun, J.; Huang, J. P.; Li, Y. H.; Zou, G. J.; Salim, T.; Wang, C. X.; Li, W. L.; Jin, H. R. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 2023, 614, 456–462.
Zhao, Y. C.; Wang, B.; Tan, J. W.; Yin, H. X.; Huang, R. Y.; Zhu, J. L.; Lin, S. Y.; Zhou, Y.; Jelinek, D.; Sun, Z. Y. et al. Soft strain-insensitive bioelectronics featuring brittle materials. Science 2022, 378, 1222–1227.
Li, G.; Huang, K. X.; Deng, J.; Guo, M. X.; Cai, M. K.; Zhang, Y.; Guo, C. F. Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 2022, 34, 2200261.
Li, J.; Carlos, C.; Zhou, H.; Sui, J. J.; Wang, Y. K.; Silva-Pedraza, Z.; Yang, F.; Dong, Y. T.; Zhang, Z. Y.; Hacker, T. A. et al. Stretchable piezoelectric biocrystal thin films. Nat. Commun. 2023, 14, 6562.
Wang, C. Y.; Wang, H. Y.; Wang, B. H.; Miyata, H.; Wang, Y.; Nayeem, M. O. G.; Kim, J. J.; Lee, S.; Yokota, T.; Onodera, H. et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv. 2022, 8, eabo1396.
Xu, Z. Y.; Qiao, X. J.; Tao, R. Z.; Li, Y. X.; Zhao, S. J.; Cai, Y. C.; Luo, X. L. A wearable sensor based on multifunctional conductive hydrogel for simultaneous accurate pH and tyrosine monitoring in sweat. Biosens. Bioelectron. 2023, 234, 115360.
Kim, M.; Um, H. K.; Choi, H.; Lee, J. S.; Kim, J.; Kim, K.; Noh, E.; Han, M.; Lee, H. W.; Choi, W. I. et al. Stretchable and biocompatible transparent electrodes for multimodal biosignal sensing from exposed skin. Adv. Electron. Mater. 2023, 9, 2300075.
Bian, Z. Y.; Li, Y. H.; Sun, H. L.; Shi, M. Y.; Zheng, Y. J.; Liu, H.; Liu, C. T.; Shen, C. Y. Transparent, intrinsically stretchable cellulose nanofiber-mediated conductive hydrogel for strain and humidity sensing. Carbohydr. Polym. 2023, 301, 120300.
Hsieh, J. C.; Alawieh, H.; Li, Y.; Iwane, F.; Zhao, L. R.; Anderson, R.; Abdullah, S. I.; Kevin Tang, K. W.; Wang, W. L.; Pyatnitskiy, I. et al. A highly stable electrode with low electrode-skin impedance for wearable brain–computer interface. Biosens. Bioelectron. 2022, 218, 114756.
Li, M.; Li, W. J.; Guan, Q. W.; Lv, J.; Wang, Z. H.; Ding, L.; Li, C.; Saiz, E.; Hou, X. Sweat-resistant bioelectronic skin sensor. Device 2023, 1, 100006.
Yuk, H.; Wu, J. J.; Zhao, X. H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 2022, 7, 935–952.
Zhou, T.; Yuk, H.; Hu, F. Q.; Wu, J. J.; Tian, F. J.; Roh, H.; Shen, Z. Q.; Gu, G. Y.; Xu, J. K.; Lu, B. Y. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 2023, 22, 895–902
Hu, L. X.; Chee, P. L.; Sugiarto, S.; Yu, Y.; Shi, C. Q.; Yan, R.; Yao, Z. Q.; Shi, X. W.; Zhi, J. C.; Kai, D. et al. Hydrogel-based flexible electronics. Adv. Mater. 2023, 35, 2205326.
Tang, X.; Shen, H.; Zhao, S. Y.; Li, N.; Liu, J. Flexible brain–computer interfaces. Nat. Electron. 2023, 6, 109–118.
Vashahi, F.; Martinez, M. R.; Dashtimoghadam, E.; Fahimipour, F.; Keith, A. N.; Bersenev, E. A.; Ivanov, D. A.; Zhulina, E. B.; Popryadukhin, P.; Matyjaszewski, K. et al. Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Sci. Adv. 2022, 8, eabm2469.
Yu, C. J.; Yue, Z. W.; Zhang, H.; Shi, M. Y.; Yao, M. M.; Yu, Q. Y.; Liu, M.; Guo, B. Y.; Zhang, H. T.; Tian, L. Q. et al. Ultra-histocompatible and electrophysiological-adapted PEDOT-based hydrogels designed for cardiac repair. Adv. Funct. Mater. 2023, 33, 2211023.
Hui, Y.; Yao, Y.; Qian, Q. L.; Luo, J. H.; Chen, H. H.; Qiao, Z.; Yu, Y. T.; Tao, L.; Zhou, N. J. Three-dimensional printing of soft hydrogel electronics. Nat. Electron. 2022, 5, 893–903.
Chen, K.; Wu, Z. H.; Liu, Y. T.; Yuan, Y.; Liu, C. S. Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment. Adv. Funct. Mater. 2022, 32, 2109687.
Donahue, M. J.; Sanchez-Sanchez, A.; Inal, S.; Qu, J.; Owens, R. M.; Mecerreyes, D.; Malliaras, G. G.; Martin, D. C. Tailoring PEDOT properties for applications in bioelectronics. Mater. Sci. Eng. R: Rep. 2020, 140, 100546.
Zhang, S. M.; Li, Y.; Tomasello, G.; Anthonisen, M.; Li, X. D.; Mazzeo, M.; Genco, A.; Grutter, P.; Cicoira, F. Tuning the electromechanical properties of PEDOT:PSS films for stretchable transistors and pressure sensors. Adv. Electron. Mater. 2019, 5, 1900191.
Li, Y.; Zhang, S. M.; Li, X. D.; Unnava, V. R. N.; Cicoira, F. Highly stretchable PEDOT:PSS organic electrochemical transistors achieved via polyethylene glycol addition. Flex. Print. Electron. 2019, 4, 044004.
Chiong, J. A.; Tran, H.; Lin, Y. J.; Zheng, Y.; Bao, Z. N. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv. Sci. 2021, 8, 2101233.
Li, Y.; Li, X. D.; Zhang, S. M.; Liu, L.; Hamad, N.; Bobbara, S. R.; Pasini, D.; Cicoira, F. Autonomic self-healing of PEDOT:PSS achieved via polyethylene glycol addition. Adv. Funct. Mater. 2020, 30, 2002853.
Li, Y.; Zhang, S. M.; Hamad, N.; Kim, K.; Liu, L.; Lerond, M.; Cicoira, F. Tailoring the self-healing properties of conducting polymer films. Macromol. Biosci. 2020, 20, 2000146.
Li, Y.; Zhou, X.; Sarkar, B.; Gagnon-Lafrenais, N.; Cicoira, F. Recent progress on self-healable conducting polymers. Adv. Mater. 2022, 34, 2108932.
Yu, C. J.; Yao, F. L.; Li, J. J. Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Acta Biomater. 2022, 139, 4–21.
Xu, Y.; Patsis, P. A.; Hauser, S.; Voigt, D.; Rothe, R.; Günther, M.; Cui, M. Y.; Yang, X. G.; Wieduwild, R.; Eckert, K. et al. Cytocompatible, injectable, and electroconductive soft adhesives with hybrid covalent/noncovalent dynamic network. Adv. Sci. 2019, 6, 1802077.
Zhang, S. M.; Chen, Y. H.; Liu, H.; Wang, Z. T.; Ling, H. N.; Wang, C. S.; Ni, J. H.; Çelebi-Saltik, B.; Wang, X. C.; Meng, X. et al. Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics. Adv. Mater. 2020, 32, 1904752.
Huang, X. X.; Chen, C. W.; Ma, X. H.; Zhu, T. S.; Ma, W. C.; Jin, Q.; Du, R. C.; Cai, Y. F.; Zhang, M. H.; Kong, D. S. et al. In situ forming dual-conductive hydrogels enable conformal, self-adhesive and antibacterial epidermal electrodes. Adv. Funct. Mater. 2023, 33, 2302846.
Shi, Y. K.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Aqueous spinning of robust, self-healable, and crack-resistant hydrogel microfibers enabled by hydrogen bond nanoconfinement. Nat. Commun. 2023, 14, 1370.
Niu, W. W.; Tian, Q.; Liu, Z. Y.; Liu, X. K. Solvent-free and skin-like supramolecular ion-conductive elastomers with versatile processability for multifunctional ionic tattoos and on-skin bioelectronics. Adv. Mater. 2023, 35, 2304157.
Tan, P.; Wang, H. F.; Xiao, F. R.; Lu, X.; Shang, W. H.; Deng, X. B.; Song, H. F.; Xu, Z. Y.; Cao, J. F.; Gan, T. S. et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 2022, 13, 358.
Ma, H. D.; Hou, J. D.; Xiao, X.; Wan, R. T.; Ge, G.; Zheng, W. Q.; Chen, C.; Cao, J.; Wang, J. Y.; Liu, C. et al. Self-healing electrical bioadhesive interface for electrophysiology recording. J. Colloid Interface Sci. 2024, 654, 639–648.
Lu, B. Y.; Yuk, H.; Lin, S. T.; Jian, N. N.; Qu, K.; Xu, J. K.; Zhao, X. H. Pure PEDOT:PSS hydrogels. Nat. Commun. 2019, 10, 1043.
Jing, X.; Li, H.; Mi, H. Y.; Liu, Y. J.; Feng, P. Y.; Tan, Y. M.; Turng, L. S. Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection. Sens. Actuators B: Chem. 2019, 295, 159–167.
Shin, M.; Shin, S. H.; Lee, M.; Kim, H. J.; Jeong, J. H.; Choi, Y. H.; Oh, D. X.; Park, J.; Jeon, H.; Eom, Y. Rheological criteria for distinguishing self-healing and non-self-healing hydrogels. Polymer 2021, 229, 123969.
Correa, S.; Grosskopf, A. K.; Lopez Hernandez, H.; Chan, D.; Yu, A. C.; Stapleton, L. M.; Appel, E. A. Translational applications of hydrogels. Chem. Rev. 2021, 121, 11385–11457.
Lu, B. L.; Lin, F. C.; Jiang, X.; Cheng, J. J.; Lu, Q. L.; Song, J. B.; Chen, C.; Huang, B. One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties. ACS Sustain. Chem. Eng. 2017, 5, 948–956.
Li, G. L.; Liu, Y.; Chen, Y. W.; Xia, Y. H.; Qi, X. M.; Wan, X.; Jin, Y.; Liu, J.; He, Q. G.; Li, K. H. et al. Robust, self-adhesive, and low-contact impedance polyvinyl alcohol/polyacrylamide dual-network hydrogel semidry electrode for biopotential signal acquisition. SmartMat 2023, 4, e1173
Ding, Y. F.; Shi, Y. F.; Yu, D.; Wang, W. All-in-one sandwich-like PVA/PEDOT:PSS/WPU electrodes with low impedance and high stretchability for ECG monitoring. Colloids Surf. A: Physicochem. Eng. Aspects 2023, 675, 132060.
McGlynn, E.; Nabaei, V.; Ren, E.; Galeote-Checa, G.; Das, R.; Curia, G.; Heidari, H. The future of neuroscience: Flexible and wireless implantable neural electronics. Adv. Sci. 2021, 8, 2002693.
Hsieh, J. C.; Li, Y.; Wang, H. Q.; Perz, M.; Tang, Q.; Tang, K. W. K.; Pyatnitskiy, I.; Reyes, R.; Ding, H.; Wang, H. L. Design of hydrogel-based wearable EEG electrodes for medical applications. J. Mater. Chem. B 2022, 10, 7260–7280.
Shen, G. C.; Zheng, K. Y.; Jiang, C. P.; Shao, S. H.; Zhao, N.; Liu, J. Q. A gelatin-based hydrogel electrode with high moisturizing ability for wearable EEG recording. IEEE Sens. J. 2023, 23, 25689–25697.
Xue, H. L.; Wang, D. Y.; Jin, M. Y.; Gao, H. B.; Wang, X. H.; Xia, L.; Li, D. A.; Sun, K.; Wang, H. N.; Dong, X. F. et al. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. Microsyst. Nanoeng. 2023, 9, 79.
Shen, G. C.; Gao, K. P.; Zhao, N.; Wang, Z. Z.; Jiang, C. P.; Liu, J. Q. A fully flexible hydrogel electrode for daily EEG monitoring. IEEE Sens. J. 2022, 22, 12522–12529.
Shen, G. C.; Gao, K. P.; Zhao, N.; Yi, Z. R.; Jiang, C. P.; Yang, B.; Liu, J. Q. A novel flexible hydrogel electrode with a strong moisturizing ability for long-term EEG recording. J. Neural Eng. 2021, 18, 066047.
Li, G. L.; Liu, Y.; Chen, Y. W.; Li, M. Z.; Song, J.; Li, K. H.; Zhang, Y. M.; Hu, L.; Qi, X. M.; Wan, X. et al. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces. J. Neural Eng. 2023, 20, 026017.
Timosina, V.; Cole, T.; Lu, H. D.; Shu, J.; Zhou, X. B.; Zhang, C. C.; Guo, J. H.; Kavehei, O.; Tang, S. Y. A non-newtonian liquid metal enabled enhanced electrography. Biosens. Bioelectron. 2023, 235, 115414.
Zhou, X.; Rajeev, A.; Subramanian, A.; Li, Y.; Rossetti, N.; Natale, G.; Lodygensky, G. A.; Cicoira, F. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes. Acta Biomater. 2022, 139, 296–306.
Yang, G. G.; Zhu, K. H.; Guo, W.; Wu, D. R.; Quan, X. L.; Huang, X.; Liu, S. Y.; Li, Y. Y.; Fang, H.; Qiu, Y. Q. et al. Adhesive and hydrophobic bilayer hydrogel enabled on-skin biosensors for high-fidelity classification of human emotion. Adv. Funct. Mater. 2022, 32, 2200457.
Du, X. J.; Yang, L. Y.; Liu, N. Recent progress on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) bioelectrodes. Small Sci. 2023, 3, 2300008.
Jastrzebska-Perfect, P.; Chowdhury, S.; Spyropoulos, G. D.; Zhao, Z. F.; Cea, C.; Gelinas, J. N.; Khodagholy, D. Translational neuroelectronics. Adv. Funct. Mater. 2020, 30, 1909165.