Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High-entropy alloy (HEA)-based materials are expected to be promising oxygen electrocatalysts due to their exceptional properties. The electronic structure regulation of HEAs plays a pivotal role in enhancing their elctrocatalytic ability. Herein, PtFeCoNiMn nanoparticles (NPs) with subtle lattice distortions are constructed on metal-organic framework-derived nitrogen-doped carbon by an ultra-rapid Joule heating process. Thanks to the modulated electronic structure and the inherent cocktail effect of HEAs, the as-synthesized PtFeCoNiMn/NC exhibits superior bifunctional electrocatalytic performance with a positive half-wave potential of 0.863 V vs. reversible hydrogen electrode (RHE) for oxygen reduction reaction and a low overpotential of 357 mV at 10 mA·cm–2 for oxygen evolution reaction. The assembled quasi-solid-state zinc-air battery using PtFeCoNiMn/NC as air electrode shows a high peak power density of 192.16 mW·cm–2, low charge−discharge voltage gap, and excellent durability over 500 cycles at 5 mA·cm–2. This work demonstrates an effective route for rational design of bifunctional nanostructured HEA electrocatalysts with favorable electronic structures, and opens up a fascinating directions for energy storage and conversion, and beyond.
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.
Wang, Q. C.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: Advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139–6190.
Pan, H.; Wang, X. L.; Li, F. Y.; Xu, Q. A one-stone-two-birds strategy to construct metal-organic framework-derived cobalt phosphide as an efficient bifunctional electrocatalyst for oxygen electrode reactions. J. Mater. Chem. A 2023, 11, 15006–15013.
Lu, Q.; Zou, X. H.; Bu, Y. F.; Shao, Z. P. Structural design of supported electrocatalysts for rechargeable Zn-air batteries. Energy Storage Mater. 2023, 55, 166–192.
Shi, J. J.; Shu, X. X.; Xiang, C. S.; Li, H.; Li, Y.; Du, W.; An, P. F.; Tian, H.; Zhang, J. T.; Xia, H. B. Fe ultra-small particles anchored on carbon aerogels to enhance the oxygen reduction reaction in Zn-air batteries. J. Mater. Chem. A 2021, 9, 6861–6871.
Wang, Q.; Zhao, Z. L.; Zhang, Z.; Feng, T. L.; Zhong, R. Y.; Xu, H.; Pantelides, S. T.; Gu, M. Sub-3 nm intermetallic ordered Pt3In clusters for oxygen reduction reaction. Adv. Sci. 2020, 7, 1901279.
Zhang, W.; Chang, J. F.; Wang, G. Z.; Li, Z.; Wang, M. Y.; Zhu, Y. M.; Li, B. Y.; Zhou, H.; Wang, G. F.; Gu, M. et al. Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc-air batteries. Energy Environ. Sci. 2022, 15, 1573–1584.
Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485.
Chai, Z. L.; Zhang, C. X.; Wang, H.; Bi, X.; Bai, P.; Wang, X. J. Increased interface effects of Pt-Fe alloy/CeO2/C with Pt-Fe selective loading on CeO2 for superior performance in direct methanol fuel cell. Int. J. Hydrogen Energy 2019, 44, 4794–4808.
Xie, M. H.; Lyu, Z.; Chen, R. H.; Shen, M.; Cao, Z. M.; Xia, Y. N. Pt-Co@Pt octahedral nanocrystals: Enhancing their activity and durability toward oxygen reduction with an intermetallic core and an ultrathin shell. J. Am. Chem. Soc. 2021, 143, 8509–8518.
Jia, Q. Y.; Caldwell, K.; Strickland, K.; Ziegelbauer, J. M.; Liu, Z. Y.; Yu, Z. Q.; Ramaker, D. E.; Mukerjee, S. Improved oxygen reduction activity and durability of dealloyed PtCox catalysts for proton exchange membrane fuel cells: Strain, ligand, and particle size effects. ACS Catal. 2015, 5, 176–186.
Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al.High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.
Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.
Zhang, W.; Xia, G. J.; Wang, Y. G. Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy. Chin. J. Catal. 2022, 43, 167–176.
Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Zhang, Q. H.; Sheng, T.; Yang, X. T.; Gu, L.; Wang, X. PtCu subnanoclusters epitaxial on octahedral PtCu/Pt skin matrix as ultrahigh stable cathode electrocatalysts for room-temperature hydrogen fuel cells. Nano Res. 2023, 16, 2252–2258.
Yano, H.; Kataoka, M.; Yamashita, H.; Uchida, H.; Watanabe, M. Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 2007, 23, 6438–6445.
Gao, F.; Zhang, Y. P.; Ren, F. F.; Song, T. X.; Du, Y. K. Tiny Ir doping of sub-one-nanometer PtMn nanowires: Highly active and stable catalysts for alcohol electrooxidation. Nanoscale 2020, 12, 12098–12105.
George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.
Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.
Chen, T.; Ning, F. H.; Qi, J. Z.; Feng, G.; Wang, Y. C.; Song, J.; Yang, T. H.; Liu, X.; Chen, L. W.; Xia, D. G. PtFeCoNiCu high-entropy solid solution alloy as highly efficient electrocatalyst for the oxygen reduction reaction. iScience 2023, 26, 105890.
Chang, J. F.; Wang, G. Z.; Li, C.; He, Y. Q.; Zhu, Y. M.; Zhang, W.; Sajid, M.; Kara, A.; Gu, M.; Yang, Y. Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule 2023, 7, 587–602.
Yu, Y. N.; Xia, F. J.; Wang, C. J.; Wu, J. S.; Fu, X. B.; Ma, D. S.; Lin, B. C.; Wang, J. A.; Yue, Q.; Kang, Y. J. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Res. 2022, 15, 7868–7876.
He, R.; Yang, L. L.; Zhang, Y.; Wang, X.; Lee, S.; Zhang, T.; Li, L. X.; Liang, Z. F.; Chen, J. W.; Li, J. S. et al. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Mater. 2023, 58, 287–298.
Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.
Xu, H. F.; Hu, R. M.; Zhang, Y. Z.; Yan, H. B.; Zhu, Q.; Shang, J. X.; Yang, S. B.; Li, B. Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 2021, 43, 212–220.
Feng, G.; Ning, F. H.; Song, J.; Shang, H. F.; Zhang, K.; Ding, Z. P.; Gao, P.; Chu, W. S.; Xia, D. G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127.
Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.
Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 2017, 3, 17075.
Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K. T.; He, Y. H.; Karakalos, S.; Zhang, H. G.; Spendelow, J. S.; Su, D.; Wu, G. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett. 2018, 18, 4163–4171.
Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Res. 2017, 10, 3228–3237.
Yao, Y. G.; Huang, Z. N.; Hughes, L. A.; Gao, J. L.; Li, T. Y.; Morris, D.; Zeltmann, S. E.; Savitzky, B. H.; Ophus, C.; Finfrock, Y. Z. et al. Extreme mixing in nanoscale transition metal alloys. Matter 2021, 4, 2340–2353.
Zhao, Z.; Sun, J. P.; Li, Z. Z.; Xu, X. F.; Zhang, Z. S.; Li, C. H.; Wang, L.; Meng, X. C. Rapid synthesis of efficient Mo-based electrocatalyst for the hydrogen evolution reaction in alkaline seawater with 11.28% solar-to-hydrogen efficiency. J. Mater. Chem. A 2023, 11, 10346–10359.
Sun, J. P.; Qin, S. Y.; Zhang, Z. S.; Li, C. H.; Xu, X. F.; Li, Z. Z.; Meng, X. C. Joule heating synthesis of well lattice-matched Co2Mo3O8/MoO2 heterointerfaces with greatly improved hydrogen evolution reaction in alkaline seawater electrolysis with 12.4 % STH efficiency. Appl. Catal. B Environ. 2023, 338, 123015.
Wang, Q. C.; Feng, Q. G.; Lei, Y. P.; Tang, S. H.; Xu, L.; Xiong, Y.; Fang, G. Z.; Wang, Y. C.; Yang, P. Y.; Liu, J. J. et al. Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 2022, 13, 3689.
Dong, S. H.; Li, C. X.; Ge, X. L.; Li, Z. Q.; Miao, X. G.; Yin, L. W. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 2017, 11, 6474–6482.
Li, J.; Liu, J. L.; Chen, C.; Guo, J. N.; Bi, R.; Chen, S.; Zhang, L.; Zhu, M. Pt nanoclusters anchored on ordered macroporous nitrogen-doped carbon for accelerated water dissociation toward superior alkaline hydrogen production. Chem. Eng. J. 2022, 436, 135186.
Liao, Y. T.; Zhu, R. T.; Zhang, W. J.; Zhu, H. Y.; Sun, Y.; Chen, J. L.; Dong, Z. H.; Lv, R. H.Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution. Nano Res. 2024, 17, 3379–3389.
Jacob, K. T.; Raj, S.; Rannesh, L. Vegard's law: A fundamental relation or an approximation. Int. J. Mater. Res. 2007, 98, 776–779.
Tian, Z. H.; Zhang, P. G.; Sun, W. W.; Yan, B. Z.; Sun, Z. M. Vegard’s law deviating Ti2(Sn x Al1– x )C solid solution with enhanced properties. J. Adv. Ceram. 2023, 12, 1655–1669.
Huang, K.; Zhang, B. W.; Wu, J. S.; Zhang, T. Y.; Peng, D. D.; Cao, X.; Zhang, Z.; Li, Z.; Huang, Y. Z. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. J. Mater. Chem. A 2020, 8, 11938–11947.
Huang, K.; Peng, D. D.; Yao, Z. X.; Xia, J. Y.; Zhang, B. W.; Liu, H.; Chen, Z. B.; Wu, F.; Wu, J. S.; Huang, Y. Z. Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER. Chem. Eng. J. 2021, 425, 131533.
Zuo, X. F.; Yan, R. Q.; Zhao, L. J.; Long, Y. D.; Shi, L.; Cheng, Q. Q.; Liu, D.; Hu, C. G. A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation. J. Mater. Chem. A 2022, 10, 14857–14865.
Hou, C. C.; Zou, L. L.; Xu, Q. A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites. Adv. Mater. 2019, 31, 1904689.
Jo, S.; Kim, M. C.; Lee, K. B.; Choi, H.; Zhang, L. T.; Sohn, J. I. Nonprecious high-entropy chalcogenide glasses-based electrocatalysts for efficient and stable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Adv. Energy Mater. 2023, 13, 2301420.
Li, R.; Liu, X. J.; Liu, W. H.; Li, Z. B.; Chan, K. C.; Lu, Z. P. Design of hierarchical porosity via manipulating chemical and microstructural complexities in high-entropy alloys for efficient water electrolysis. Adv. Sci. 2022, 9, 2105808.
Kwon, J.; Sun, S.; Choi, S.; Lee, K.; Jo, S.; Park, K.; Kim, Y. K.; Park, H. B.; Park, H. Y.; Jang, J. H. et al. Tailored electronic structure of Ir in high entropy alloy for highly active and durable bifunctional electrocatalyst for water splitting under an acidic environment. Adv. Mater. 2023, 35, 2300091.
Sivanantham, A.; Lee, H.; Hwang, S. W.; Lee, H. U.; Cho, S. B.; Ahn, B.; Cho, I. S. Complementary functions of vanadium in boosting electrocatalytic activity of CuCoNiFeMn high-entropy alloy for water splitting. Adv. Funct. Mater. 2023, 33, 2301153.
Cui, Z. M.; Chen, H.; Zhou, W. D.; Zhao, M. T.; DiSalvo, F. J. Structurally ordered Pt3Cr as oxygen reduction electrocatalyst: Ordering control and origin of enhanced stability. Chem. Mater. 2015, 27, 7538–7545.
Gong, M. X.; Xiao, D. D.; Deng, Z. P.; Zhang, R.; Xia, W. W.; Zhao, T. H.; Liu, X. P.; Shen, T.; Hu, Y. Z.; Lu, Y. et al. Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Appl. Catal. B Environ. 2021, 282, 119617.
Yang, J.; Hübner, R.; Zhang, J. W.; Wan, H.; Zheng, Y. Y.; Wang, H. L.; Qi, H. Y.; He, L. Q.; Li, Y.; Dubale, A. A. et al. A robust PtNi nanoframe/N-doped graphene aerogel electrocatalyst with both high activity and stability. Angew. Chem., Int. Ed. 2021, 60, 9590–9597.
Zhou, Q.; An, Y.; Zhou, S. Y.; Wang, Z. C.; Long, J.; Liao, W.; Chen, M. D.; Wang, Q. M. Precisely tuning the electronic structure of ordered PtFe alloy supported on multi-walled carbon nanotubes for enhanced methanol oxidation. J. Alloys Compd. 2023, 937, 168347.
Zhang, J. T.; Xia, Z. H.; Dai, L. M. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564.
Li, Y. R.; Li, H. W.; Zhao, Y.; Ji, D.; Guo, P.; Li, G. X.; Zhao, X. H. Insights on the roles of nitrogen configuration in enhancing the performance of electrocatalytic methanol oxidation over Pt nanoparticles. Small 2023, 19, 2303065.
Nguyen, T. X.; Liao, Y. C.; Lin, C. C.; Su, Y. H.; Ting, J. M. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2101632.
Nguyen, T. X.; Su, Y. H.; Lin, C. C.; Ruan, J.; Ting, J. M. A new high entropy glycerate for high performance oxygen evolution reaction. Adv. Sci. 2021, 8, 2002446.
Wei, M.; Sun, Y. Y.; Ai, F.; Xi, S. B.; Zhang, J. Y.; Wang, J. K. Stretchable high-entropy alloy nanoflowers enable enhanced alkaline hydrogen evolution Catalysis. Appl. Catal. B Environ. 2023, 334, 122814.