AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

MOF-mediated synthesis of novel PtFeCoNiMn high-entropy nano-alloy as bifunctional oxygen electrocatalysts for zinc-air battery

Mingkuan Xie1,2,3Xin Xiao1,2,4,5( )Duojie Wu3,6Cheng Zhen3Chunsheng Wu1,2Wenjuan Wang1,3Hao Nian1,2Fayan Li1,2Meng Danny Gu3,6Qiang Xu1,2,3,4,5( )
Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Shenzhen 518055, China
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Shenzhen 518055, China
Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
Show Author Information

Graphical Abstract

PtFeCoNiMn high-entropy alloy with subtle lattice distortions is constructed on metal-organic framework-derived nitrogen-doped carbon by an ultra-rapid Joule heating process, rendering excellent performance in zinc-air battery.

Abstract

High-entropy alloy (HEA)-based materials are expected to be promising oxygen electrocatalysts due to their exceptional properties. The electronic structure regulation of HEAs plays a pivotal role in enhancing their elctrocatalytic ability. Herein, PtFeCoNiMn nanoparticles (NPs) with subtle lattice distortions are constructed on metal-organic framework-derived nitrogen-doped carbon by an ultra-rapid Joule heating process. Thanks to the modulated electronic structure and the inherent cocktail effect of HEAs, the as-synthesized PtFeCoNiMn/NC exhibits superior bifunctional electrocatalytic performance with a positive half-wave potential of 0.863 V vs. reversible hydrogen electrode (RHE) for oxygen reduction reaction and a low overpotential of 357 mV at 10 mA·cm–2 for oxygen evolution reaction. The assembled quasi-solid-state zinc-air battery using PtFeCoNiMn/NC as air electrode shows a high peak power density of 192.16 mW·cm–2, low charge−discharge voltage gap, and excellent durability over 500 cycles at 5 mA·cm–2. This work demonstrates an effective route for rational design of bifunctional nanostructured HEA electrocatalysts with favorable electronic structures, and opens up a fascinating directions for energy storage and conversion, and beyond.

Electronic Supplementary Material

Download File(s)
12274_2024_6526_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

[2]

Wang, Q. C.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: Advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139–6190.

[3]

Pan, H.; Wang, X. L.; Li, F. Y.; Xu, Q. A one-stone-two-birds strategy to construct metal-organic framework-derived cobalt phosphide as an efficient bifunctional electrocatalyst for oxygen electrode reactions. J. Mater. Chem. A 2023, 11, 15006–15013.

[4]

Lu, Q.; Zou, X. H.; Bu, Y. F.; Shao, Z. P. Structural design of supported electrocatalysts for rechargeable Zn-air batteries. Energy Storage Mater. 2023, 55, 166–192.

[5]

Shi, J. J.; Shu, X. X.; Xiang, C. S.; Li, H.; Li, Y.; Du, W.; An, P. F.; Tian, H.; Zhang, J. T.; Xia, H. B. Fe ultra-small particles anchored on carbon aerogels to enhance the oxygen reduction reaction in Zn-air batteries. J. Mater. Chem. A 2021, 9, 6861–6871.

[6]

Wang, Q.; Zhao, Z. L.; Zhang, Z.; Feng, T. L.; Zhong, R. Y.; Xu, H.; Pantelides, S. T.; Gu, M. Sub-3 nm intermetallic ordered Pt3In clusters for oxygen reduction reaction. Adv. Sci. 2020, 7, 1901279.

[7]

Zhang, W.; Chang, J. F.; Wang, G. Z.; Li, Z.; Wang, M. Y.; Zhu, Y. M.; Li, B. Y.; Zhou, H.; Wang, G. F.; Gu, M. et al. Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc-air batteries. Energy Environ. Sci. 2022, 15, 1573–1584.

[8]

Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485.

[9]

Chai, Z. L.; Zhang, C. X.; Wang, H.; Bi, X.; Bai, P.; Wang, X. J. Increased interface effects of Pt-Fe alloy/CeO2/C with Pt-Fe selective loading on CeO2 for superior performance in direct methanol fuel cell. Int. J. Hydrogen Energy 2019, 44, 4794–4808.

[10]

Xie, M. H.; Lyu, Z.; Chen, R. H.; Shen, M.; Cao, Z. M.; Xia, Y. N. Pt-Co@Pt octahedral nanocrystals: Enhancing their activity and durability toward oxygen reduction with an intermetallic core and an ultrathin shell. J. Am. Chem. Soc. 2021, 143, 8509–8518.

[11]

Jia, Q. Y.; Caldwell, K.; Strickland, K.; Ziegelbauer, J. M.; Liu, Z. Y.; Yu, Z. Q.; Ramaker, D. E.; Mukerjee, S. Improved oxygen reduction activity and durability of dealloyed PtCox catalysts for proton exchange membrane fuel cells: Strain, ligand, and particle size effects. ACS Catal. 2015, 5, 176–186.

[12]

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al.High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

[13]

Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.

[14]

Zhang, W.; Xia, G. J.; Wang, Y. G. Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy. Chin. J. Catal. 2022, 43, 167–176.

[15]

Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Zhang, Q. H.; Sheng, T.; Yang, X. T.; Gu, L.; Wang, X. PtCu subnanoclusters epitaxial on octahedral PtCu/Pt skin matrix as ultrahigh stable cathode electrocatalysts for room-temperature hydrogen fuel cells. Nano Res. 2023, 16, 2252–2258.

[16]

Yano, H.; Kataoka, M.; Yamashita, H.; Uchida, H.; Watanabe, M. Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 2007, 23, 6438–6445.

[17]

Gao, F.; Zhang, Y. P.; Ren, F. F.; Song, T. X.; Du, Y. K. Tiny Ir doping of sub-one-nanometer PtMn nanowires: Highly active and stable catalysts for alcohol electrooxidation. Nanoscale 2020, 12, 12098–12105.

[18]

George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

[19]

Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

[20]

Chen, T.; Ning, F. H.; Qi, J. Z.; Feng, G.; Wang, Y. C.; Song, J.; Yang, T. H.; Liu, X.; Chen, L. W.; Xia, D. G. PtFeCoNiCu high-entropy solid solution alloy as highly efficient electrocatalyst for the oxygen reduction reaction. iScience 2023, 26, 105890.

[21]

Chang, J. F.; Wang, G. Z.; Li, C.; He, Y. Q.; Zhu, Y. M.; Zhang, W.; Sajid, M.; Kara, A.; Gu, M.; Yang, Y. Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule 2023, 7, 587–602.

[22]

Yu, Y. N.; Xia, F. J.; Wang, C. J.; Wu, J. S.; Fu, X. B.; Ma, D. S.; Lin, B. C.; Wang, J. A.; Yue, Q.; Kang, Y. J. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Res. 2022, 15, 7868–7876.

[23]

He, R.; Yang, L. L.; Zhang, Y.; Wang, X.; Lee, S.; Zhang, T.; Li, L. X.; Liang, Z. F.; Chen, J. W.; Li, J. S. et al. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Mater. 2023, 58, 287–298.

[24]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[25]

Xu, H. F.; Hu, R. M.; Zhang, Y. Z.; Yan, H. B.; Zhu, Q.; Shang, J. X.; Yang, S. B.; Li, B. Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 2021, 43, 212–220.

[26]

Feng, G.; Ning, F. H.; Song, J.; Shang, H. F.; Zhang, K.; Ding, Z. P.; Gao, P.; Chu, W. S.; Xia, D. G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127.

[27]

Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

[28]

Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 2017, 3, 17075.

[29]

Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K. T.; He, Y. H.; Karakalos, S.; Zhang, H. G.; Spendelow, J. S.; Su, D.; Wu, G. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett. 2018, 18, 4163–4171.

[30]

Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Res. 2017, 10, 3228–3237.

[31]

Yao, Y. G.; Huang, Z. N.; Hughes, L. A.; Gao, J. L.; Li, T. Y.; Morris, D.; Zeltmann, S. E.; Savitzky, B. H.; Ophus, C.; Finfrock, Y. Z. et al. Extreme mixing in nanoscale transition metal alloys. Matter 2021, 4, 2340–2353.

[32]

Zhao, Z.; Sun, J. P.; Li, Z. Z.; Xu, X. F.; Zhang, Z. S.; Li, C. H.; Wang, L.; Meng, X. C. Rapid synthesis of efficient Mo-based electrocatalyst for the hydrogen evolution reaction in alkaline seawater with 11.28% solar-to-hydrogen efficiency. J. Mater. Chem. A 2023, 11, 10346–10359.

[33]

Sun, J. P.; Qin, S. Y.; Zhang, Z. S.; Li, C. H.; Xu, X. F.; Li, Z. Z.; Meng, X. C. Joule heating synthesis of well lattice-matched Co2Mo3O8/MoO2 heterointerfaces with greatly improved hydrogen evolution reaction in alkaline seawater electrolysis with 12.4 % STH efficiency. Appl. Catal. B Environ. 2023, 338, 123015.

[34]

Wang, Q. C.; Feng, Q. G.; Lei, Y. P.; Tang, S. H.; Xu, L.; Xiong, Y.; Fang, G. Z.; Wang, Y. C.; Yang, P. Y.; Liu, J. J. et al. Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 2022, 13, 3689.

[35]

Dong, S. H.; Li, C. X.; Ge, X. L.; Li, Z. Q.; Miao, X. G.; Yin, L. W. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 2017, 11, 6474–6482.

[36]

Li, J.; Liu, J. L.; Chen, C.; Guo, J. N.; Bi, R.; Chen, S.; Zhang, L.; Zhu, M. Pt nanoclusters anchored on ordered macroporous nitrogen-doped carbon for accelerated water dissociation toward superior alkaline hydrogen production. Chem. Eng. J. 2022, 436, 135186.

[37]

Liao, Y. T.; Zhu, R. T.; Zhang, W. J.; Zhu, H. Y.; Sun, Y.; Chen, J. L.; Dong, Z. H.; Lv, R. H.Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution. Nano Res. 2024, 17, 3379–3389.

[38]

Jacob, K. T.; Raj, S.; Rannesh, L. Vegard's law: A fundamental relation or an approximation. Int. J. Mater. Res. 2007, 98, 776–779.

[39]

Tian, Z. H.; Zhang, P. G.; Sun, W. W.; Yan, B. Z.; Sun, Z. M. Vegard’s law deviating Ti2(Sn x Al1– x )C solid solution with enhanced properties. J. Adv. Ceram. 2023, 12, 1655–1669.

[40]

Huang, K.; Zhang, B. W.; Wu, J. S.; Zhang, T. Y.; Peng, D. D.; Cao, X.; Zhang, Z.; Li, Z.; Huang, Y. Z. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. J. Mater. Chem. A 2020, 8, 11938–11947.

[41]

Huang, K.; Peng, D. D.; Yao, Z. X.; Xia, J. Y.; Zhang, B. W.; Liu, H.; Chen, Z. B.; Wu, F.; Wu, J. S.; Huang, Y. Z. Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER. Chem. Eng. J. 2021, 425, 131533.

[42]

Zuo, X. F.; Yan, R. Q.; Zhao, L. J.; Long, Y. D.; Shi, L.; Cheng, Q. Q.; Liu, D.; Hu, C. G. A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation. J. Mater. Chem. A 2022, 10, 14857–14865.

[43]

Hou, C. C.; Zou, L. L.; Xu, Q. A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites. Adv. Mater. 2019, 31, 1904689.

[44]

Jo, S.; Kim, M. C.; Lee, K. B.; Choi, H.; Zhang, L. T.; Sohn, J. I. Nonprecious high-entropy chalcogenide glasses-based electrocatalysts for efficient and stable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Adv. Energy Mater. 2023, 13, 2301420.

[45]

Li, R.; Liu, X. J.; Liu, W. H.; Li, Z. B.; Chan, K. C.; Lu, Z. P. Design of hierarchical porosity via manipulating chemical and microstructural complexities in high-entropy alloys for efficient water electrolysis. Adv. Sci. 2022, 9, 2105808.

[46]

Kwon, J.; Sun, S.; Choi, S.; Lee, K.; Jo, S.; Park, K.; Kim, Y. K.; Park, H. B.; Park, H. Y.; Jang, J. H. et al. Tailored electronic structure of Ir in high entropy alloy for highly active and durable bifunctional electrocatalyst for water splitting under an acidic environment. Adv. Mater. 2023, 35, 2300091.

[47]

Sivanantham, A.; Lee, H.; Hwang, S. W.; Lee, H. U.; Cho, S. B.; Ahn, B.; Cho, I. S. Complementary functions of vanadium in boosting electrocatalytic activity of CuCoNiFeMn high-entropy alloy for water splitting. Adv. Funct. Mater. 2023, 33, 2301153.

[48]

Cui, Z. M.; Chen, H.; Zhou, W. D.; Zhao, M. T.; DiSalvo, F. J. Structurally ordered Pt3Cr as oxygen reduction electrocatalyst: Ordering control and origin of enhanced stability. Chem. Mater. 2015, 27, 7538–7545.

[49]

Gong, M. X.; Xiao, D. D.; Deng, Z. P.; Zhang, R.; Xia, W. W.; Zhao, T. H.; Liu, X. P.; Shen, T.; Hu, Y. Z.; Lu, Y. et al. Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Appl. Catal. B Environ. 2021, 282, 119617.

[50]
Nie, Y.; Sun, Y. J.; Song, B. Y.; Meyer, Q.; Liu, S. Y.; Guo, H. Y.; Tao, L.; Lin, F. X.; Luo, M. C.; Zhang, Q. H. et al. Low-electronegativity Mn-contraction of PtMn nanodendrites boosts oxygen reduction durability. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202317987.
[51]

Yang, J.; Hübner, R.; Zhang, J. W.; Wan, H.; Zheng, Y. Y.; Wang, H. L.; Qi, H. Y.; He, L. Q.; Li, Y.; Dubale, A. A. et al. A robust PtNi nanoframe/N-doped graphene aerogel electrocatalyst with both high activity and stability. Angew. Chem., Int. Ed. 2021, 60, 9590–9597.

[52]

Zhou, Q.; An, Y.; Zhou, S. Y.; Wang, Z. C.; Long, J.; Liao, W.; Chen, M. D.; Wang, Q. M. Precisely tuning the electronic structure of ordered PtFe alloy supported on multi-walled carbon nanotubes for enhanced methanol oxidation. J. Alloys Compd. 2023, 937, 168347.

[53]

Zhang, J. T.; Xia, Z. H.; Dai, L. M. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564.

[54]

Li, Y. R.; Li, H. W.; Zhao, Y.; Ji, D.; Guo, P.; Li, G. X.; Zhao, X. H. Insights on the roles of nitrogen configuration in enhancing the performance of electrocatalytic methanol oxidation over Pt nanoparticles. Small 2023, 19, 2303065.

[55]

Nguyen, T. X.; Liao, Y. C.; Lin, C. C.; Su, Y. H.; Ting, J. M. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2101632.

[56]

Nguyen, T. X.; Su, Y. H.; Lin, C. C.; Ruan, J.; Ting, J. M. A new high entropy glycerate for high performance oxygen evolution reaction. Adv. Sci. 2021, 8, 2002446.

[57]

Wei, M.; Sun, Y. Y.; Ai, F.; Xi, S. B.; Zhang, J. Y.; Wang, J. K. Stretchable high-entropy alloy nanoflowers enable enhanced alkaline hydrogen evolution Catalysis. Appl. Catal. B Environ. 2023, 334, 122814.

Nano Research
Pages 5288-5297
Cite this article:
Xie M, Xiao X, Wu D, et al. MOF-mediated synthesis of novel PtFeCoNiMn high-entropy nano-alloy as bifunctional oxygen electrocatalysts for zinc-air battery. Nano Research, 2024, 17(6): 5288-5297. https://doi.org/10.1007/s12274-024-6526-4
Topics:

1364

Views

3

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 23 November 2023
Revised: 18 January 2024
Accepted: 29 January 2024
Published: 21 March 2024
© Tsinghua University Press 2024
Return