Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrocatalytic nitrate reduction to ammonia (NO3−RR) for removing nitrate from wastewater is a promising but challengeable technology that is increasingly studied. Herein, we developed an efficient CuOx and CoCuOx composed hybrid catalyst (CoCuOx@CuOx/copper foam (CF)), characteristic of distinctive shell–core nanowires grown on CF substrate with CuOx core and CoCuOx shell. The built-in electric field formed at the interface of the CoO/Cu2O heterostructure promotes NO3− adsorption by modulating the charge distribution at the interface, which greatly improves the ammonia yield rate and Faradaic efficiency. At −0.2 V vs. reversible hydrogen electrode (RHE), CoCuOx@CuOx/CF achieves not only an excellent ammonia yield rate of up to 519.1 μg·h−1·cm−2 and Faradaic efficiency of 99.83% at 1 mM NO3− concentration, but also excellent mechanical stabilities. This study provides a novel pathway to design electrocatalyst for the removal of nitrate from dilute nitric acid solutions (≤ 2 mM).
Yu, C. Q.; Huang, X.; Chen, H.; Godfray, H. C. J.; Wright, J. S.; Hall, J. W.; Gong, P.; Ni, S. Q.; Qiao, S. C.; Huang, G. R. et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520.
Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2020, 31, 2008533.
Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.
Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate—A step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.
Clark, C. A.; Reddy, C. P.; Xu, H.; Heck, K. N.; Luo, G. H.; Senftle, T. P.; Wong, M. S. Mechanistic insights into pH-controlled nitrite reduction to ammonia and hydrazine over rhodium. ACS Catal. 2020, 10, 494–509.
Wang, P. K.; Chang, F.; Gao, W. B.; Guo, J. P.; Wu, G. T.; He, T.; Chen, P. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64–70.
Clark, R. M.; Ehreth, D. J.; Convery, J. J. Water legislation in the U.S.: An overview of the safe drinking water act. Toxicol. Ind. Health 1991, 7, 43–52.
Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.
Zhao, Y. L.; Liu, Y.; Zhang, Z. J.; Mo, Z. K.; Wang, C. Y.; Gao, S. Y. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124.
Stirling, A.; Pápai, I.; Mink, J.; Salahub, D. R. Density functional study of nitrogen oxides. J. Chem. Phys. 1994, 100, 2910–2923.
Lim, J.; Liu, C. Y.; Park, J.; Liu, Y. H.; Senftle, T. P.; Lee, S. W.; Hatzell, M. C. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catal. 2021, 11, 7568–7577.
Lim, J.; Fernández, C. A.; Lee, S. W.; Hatzell, M. C. Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Lett. 2021, 6, 3676–3685.
Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.
Theerthagiri, J.; Park, J.; Das, H. T.; Rahamathulla, N.; Cardoso, E. S. F.; Murthy, A. P.; Maia, G.; Vo, D. V. N.; Choi, M. Y. Electrocatalytic conversion of nitrate waste into ammonia: A review. Environ. Chem. Lett. 2022, 20, 2929–2949.
Wu, K. M.; Sun, C. C.; Wang, Z. N.; Song, Q.; Bai, X. X.; Yu, X.; Li, Q.; Wang, Z.; Zhang, H.; Zhang, J. et al. Surface reconstruction on uniform Cu nanodisks boosted electrochemical nitrate reduction to ammonia. ACS Mater. Lett. 2022, 4, 650–656.
Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2019, 2, 377–380.
Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.
Ren, Y. W.; Yu, C.; Tan, X. Y.; Wei, Q. B.; Wang, Z.; Ni, L.; Wang, L. S.; Qiu, J. S. Strategies to activate inert nitrogen molecules for efficient ammonia electrosynthesis: Current status, challenges, and perspectives. Energy Environ. Sci. 2022, 15, 2776–2805.
Choi, J.; Du, H. L.; Nguyen, C. K.; Suryanto, B. H. R.; Simonov, A. N.; MacFarlane, D. R. Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: A potential source of ammonia in dinitrogen reduction studies. ACS Energy Lett. 2020, 5, 2095–2097.
He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.
Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.
Daiyan, R.; Tran-Phu, T.; Kumar, P.; Iputera, K.; Tong, Z. Z.; Leverett, J.; Khan, M. H. A.; Asghar Esmailpour, A.; Jalili, A.; Lim, M. et al. Nitrate reduction to ammonium: From CuO defect engineering to waste NO x -to-NH3 economic feasibility. Energy Environ. Sci. 2021, 14, 3588–3598.
Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.
Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.
Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.
Liu, H. M.; Lang, X. Y.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L. C.; Guijarro, N.; Yin, H. B.; Peng, Y.; Li, J. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.
van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290–294.
Jing, J. F.; Yang, J.; Li, W. L.; Wu, Z. H.; Zhu, Y. F. Construction of interfacial electric field via dual-porphyrin heterostructure boosting photocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2106807.
Ren, Y. L.; Ma, Y. J.; Wang, B.; Chang, S. Z.; Zhai, Q. X.; Wu, H.; Dai, Y. M.; Yang, Y. R.; Tang, S. C.; Meng, X. K. Furnishing continuous efficient bidirectional polysulfide conversion for long-life and high-loading lithium-sulfur batteries via the built-in electric field. Small 2023, 19, 2300065.
Zhang, S.; Liu, Y.; Ma, R.; Jia, D. S.; Wen, T.; Ai, Y. J.; Zhao, G. X.; Fang, F.; Hu, B. W.; Wang, X. K. Molybdenum(VI)-oxo clusters incorporation activates g-C3N4 with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance. Adv. Funct. Mater. 2022, 32, 2204175.
Wang, H. J.; Guo, Y. N.; Li, C. J.; Yu, H. J.; Deng, K.; Wang, Z. Q.; Li, X. N.; Xu, Y.; Wang, L. Cu/CuO x in-plane heterostructured nanosheet arrays with rich oxygen vacancies enhance nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 34761–34769.
Liu, S. L.; Cui, L.; Yin, S. L.; Ren, H.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Heterointerface-triggered electronic structure reformation: Pd/CuO nano-olives motivate nitrite electroreduction to ammonia. Appl. Catal. B: Environ. 2022, 319, 121876.
Ye, S. H.; Chen, Z. D.; Zhang, G. K.; Chen, W. D.; Peng, C.; Yang, X. Y.; Zheng, L. R.; Li, Y. L.; Ren, X. Z.; Cao, H. Q. et al. Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 2022, 15, 760–770.
Deng, X. H.; Yang, Y. P.; Wang, L.; Fu, X. Z.; Luo, J. L. Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A·cm−2. Adv. Sci. 2021, 8, 2004523.
Xu, X.; Hu, L.; Li, Z. R.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Li, J.; Luo, Y. S.; Yan, X. D.; Hamdy, M. S. et al. Oxygen vacancies in Co3O4 nanoarrays promote nitrate electroreduction for ammonia synthesis. Sustain. Energy Fuels 2022, 6, 4130–4136.
Chen, Q. R.; Liang, J.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A.; Li, T. S.; Guo, H. R.; Sun, X. P. CoO nanoparticle decorated N-doped carbon nanotubes: A high-efficiency catalyst for nitrate reduction to ammonia. Chem. Commun. 2022, 58, 5901–5904.
Wang, T. H.; Huang, Z. F.; Liu, T. Y.; Tao, L.; Tian, J.; Gu, K. Z.; Wei, X. X.; Zhou, P.; Gan, L.; Du, S. Q. et al. Transforming electrocatalytic biomass upgrading and hydrogen production from electricity input to electricity output. Angew. Chem., Int. Ed. 2022, 61, e202115636.
Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.
Xue, Q.; Bai, J.; Han, C. C.; Chen, P.; Jiang, J. X.; Chen, Y. Au nanowires@Pd-polyethylenimine nanohybrids as highly active and methanol-tolerant electrocatalysts toward oxygen reduction reaction in alkaline media. ACS Catal. 2018, 8, 11287–11295.
Zhou, W. L.; Wang, X. Y.; Shan, J. W.; Yue, L. G.; Lu, D. Z.; Chen, L.; Zhang, J. C.; Li, Y. Y. Engineering hollow core-shell hetero-structure box to induce interfacial charge modulation for promoting bidirectional sulfur conversion in lithium-sulfur batteries. J. Energy Chem. 2023, 80, 128–139.
Liang, Y. T.; Zeng, Y. X.; Tang, X. F.; Xia, W.; Song, B.; Yao, F. B.; Yang, Y.; Chen, Y. S.; Peng, C. X.; Zhou, C. Y. et al. One-step synthesis of Cu(OH)2-Cu/Ni foam cathode for electrochemical reduction of nitrate. Chem. Eng. J. 2023, 451, 138936.
Wang, Z.; Sun, C. C.; Bai, X. X.; Wang, Z. N.; Yu, X.; Tong, X.; Wang, Z.; Zhang, H.; Pang, H. L.; Zhou, L. J. et al. Facile synthesis of carbon nanobelts decorated with Cu and Pd for nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 30969–30978.
Yue, Q.; Gao, T. T.; Yuan, H. Y.; Xiao, D. An efficient way to improve water splitting electrocatalysis by electrodepositing cobalt phosphide nanosheets onto copper nanowires. Int. J. Hydrog. Energy 2021, 46, 19421–19432.
Wang, D.; Li, J.; Zhao, Y.; Xu, H. T.; Zhao, J. Z. Bifunctional Cu2S-Co(OH)2 nanotube array/Cu foam electrocatalyst for overall water splitting. Electrochim. Acta 2019, 316, 8–18.
Xin, Y.; Wang, F. L.; Chen, L. Y.; Li, Y. W.; Shen, K. Superior bifunctional cobalt/nitrogen-codoped carbon nanosheet arrays on copper foam enable stable energy-saving hydrogen production accompanied with glucose upgrading. Green Chem. 2022, 24, 6544–6555.
Gao, D. D.; Liu, R. J.; Liu, S.; Greiner, S.; Anjass, M.; Biskupek, J.; Kaiser, U.; Braun, H.; Jacob, T.; Streb, C. Electrocatalytic oxygen evolution by hierarchically structured cobalt-iron composites. ACS Appl. Mater. Interfaces 2021, 13, 19048–19054.
Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 1991, 113, 855–861.
Ni, S.; Qu, H. N.; Xu, Z. H.; Zhu, X. Y.; Xing, H. F.; Wang, L.; Yu, J. M.; Liu, H. Z.; Chen, C. M.; Yang, L. R. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B: Environ. 2021, 299, 120638.
Xu, Y.; Sheng, Y. W.; Wang, M. Z.; Ren, T. L.; Shi, K. K.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. Interface coupling induced built-in electric fields boost electrochemical nitrate reduction to ammonia over CuO@MnO2 core–shell hierarchical nanoarrays. J. Mater. Chem. A 2022, 10, 16883–16890.
Liu, H.; Li, J. S.; Du, F.; Yang, L. Y.; Huang, S. Y.; Gao, J. F.; Li, C. M.; Guo, C. X. A core–shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate. Green Energy Environ. 2023, 8, 1619–1629.
Fu, W. Y.; Du, Y. Y.; Jing, J. N.; Fu, C. H.; Zhou, M. H. Highly selective nitrate reduction to ammonia on CoO/Cu foam via constructing interfacial electric field to tune adsorption of reactants. Appl. Catal. B: Environ. 2023, 324, 122201.
Li, Z. C.; Pei, Y.; Ma, R. G.; Wang, Y. D.; Zhu, Y. F.; Yang, M. H.; Wang, J. C. A phosphate semiconductor-induced built-in electric field boosts electron enrichment for electrocatalytic hydrogen evolution in alkaline conditions. J. Mater. Chem. A 2021, 9, 13109–13114.
Ouyang, Q.; Cheng, S. C.; Yang, C. H.; Lei, Z. T. Vertically grown p-n heterojunction FeCoNi LDH/CuO arrays with modulated interfacial charges to facilitate the electrocatalytic oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 11938–11947.
Chen, J. P.; Zheng, J. P.; He, W. D.; Liang, H. K.; Li, Y.; Cui, H.; Wang, C. X. Self-standing hollow porous Co/a-WO x nanowire with maximum Mott–Schottky effect for boosting alkaline hydrogen evolution reaction. Nano Res. 2023, 16, 4603–4611.