AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficient electrocatalytic reduction of nitrate to ammonia at low concentration by copper-cobalt oxide nanowires with shell–core structure

Chenhao Xiao1Yaxiao Guo1( )Jiayuan Sun1Tao Guo1Xinyuan Jia2Shinuo Guo1Guancheng Wu1Yue Sun1Zhaoyang Yao2Yi Liu1,3( )
State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China
Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Show Author Information

Graphical Abstract

A CoCuOx@CuOx/copper foam (CF) electrode is established for electrocatalytic nitrate reduction to ammonia, displaying the excellent ammonia yield rate up to 519.1 μg·h−1·cm−2 and Faradaic efficiency of 99.83% in 1 mM NO3 electrolyte at −0.2 V vs. reversible hydrogen electrode (RHE). The heterostructure consisting of Cu2O and CoO promotes the adsorption of nitrate by modulating the surface electronic structure, which further improves the electrocatalytic nitrate reduction to ammonia (NO3RR) performance of the material.

Abstract

Electrocatalytic nitrate reduction to ammonia (NO3RR) for removing nitrate from wastewater is a promising but challengeable technology that is increasingly studied. Herein, we developed an efficient CuOx and CoCuOx composed hybrid catalyst (CoCuOx@CuOx/copper foam (CF)), characteristic of distinctive shell–core nanowires grown on CF substrate with CuOx core and CoCuOx shell. The built-in electric field formed at the interface of the CoO/Cu2O heterostructure promotes NO3 adsorption by modulating the charge distribution at the interface, which greatly improves the ammonia yield rate and Faradaic efficiency. At −0.2 V vs. reversible hydrogen electrode (RHE), CoCuOx@CuOx/CF achieves not only an excellent ammonia yield rate of up to 519.1 μg·h−1·cm−2 and Faradaic efficiency of 99.83% at 1 mM NO3 concentration, but also excellent mechanical stabilities. This study provides a novel pathway to design electrocatalyst for the removal of nitrate from dilute nitric acid solutions (≤ 2 mM).

Electronic Supplementary Material

Download File(s)
12274_2024_6530_MOESM1_ESM.pdf (2.7 MB)

References

[1]

Yu, C. Q.; Huang, X.; Chen, H.; Godfray, H. C. J.; Wright, J. S.; Hall, J. W.; Gong, P.; Ni, S. Q.; Qiao, S. C.; Huang, G. R. et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520.

[2]

Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2020, 31, 2008533.

[3]

Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.

[4]

Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate—A step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.

[5]

Clark, C. A.; Reddy, C. P.; Xu, H.; Heck, K. N.; Luo, G. H.; Senftle, T. P.; Wong, M. S. Mechanistic insights into pH-controlled nitrite reduction to ammonia and hydrazine over rhodium. ACS Catal. 2020, 10, 494–509.

[6]

Wang, P. K.; Chang, F.; Gao, W. B.; Guo, J. P.; Wu, G. T.; He, T.; Chen, P. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64–70.

[7]

Clark, R. M.; Ehreth, D. J.; Convery, J. J. Water legislation in the U.S.: An overview of the safe drinking water act. Toxicol. Ind. Health 1991, 7, 43–52.

[8]

Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

[9]

Zhao, Y. L.; Liu, Y.; Zhang, Z. J.; Mo, Z. K.; Wang, C. Y.; Gao, S. Y. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124.

[10]

Stirling, A.; Pápai, I.; Mink, J.; Salahub, D. R. Density functional study of nitrogen oxides. J. Chem. Phys. 1994, 100, 2910–2923.

[11]

Lim, J.; Liu, C. Y.; Park, J.; Liu, Y. H.; Senftle, T. P.; Lee, S. W.; Hatzell, M. C. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catal. 2021, 11, 7568–7577.

[12]

Lim, J.; Fernández, C. A.; Lee, S. W.; Hatzell, M. C. Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Lett. 2021, 6, 3676–3685.

[13]

Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

[14]

Theerthagiri, J.; Park, J.; Das, H. T.; Rahamathulla, N.; Cardoso, E. S. F.; Murthy, A. P.; Maia, G.; Vo, D. V. N.; Choi, M. Y. Electrocatalytic conversion of nitrate waste into ammonia: A review. Environ. Chem. Lett. 2022, 20, 2929–2949.

[15]

Wu, K. M.; Sun, C. C.; Wang, Z. N.; Song, Q.; Bai, X. X.; Yu, X.; Li, Q.; Wang, Z.; Zhang, H.; Zhang, J. et al. Surface reconstruction on uniform Cu nanodisks boosted electrochemical nitrate reduction to ammonia. ACS Mater. Lett. 2022, 4, 650–656.

[16]

Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2019, 2, 377–380.

[17]

Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

[18]

Ren, Y. W.; Yu, C.; Tan, X. Y.; Wei, Q. B.; Wang, Z.; Ni, L.; Wang, L. S.; Qiu, J. S. Strategies to activate inert nitrogen molecules for efficient ammonia electrosynthesis: Current status, challenges, and perspectives. Energy Environ. Sci. 2022, 15, 2776–2805.

[19]

Choi, J.; Du, H. L.; Nguyen, C. K.; Suryanto, B. H. R.; Simonov, A. N.; MacFarlane, D. R. Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: A potential source of ammonia in dinitrogen reduction studies. ACS Energy Lett. 2020, 5, 2095–2097.

[20]

He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.

[21]

Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.

[22]

Daiyan, R.; Tran-Phu, T.; Kumar, P.; Iputera, K.; Tong, Z. Z.; Leverett, J.; Khan, M. H. A.; Asghar Esmailpour, A.; Jalili, A.; Lim, M. et al. Nitrate reduction to ammonium: From CuO defect engineering to waste NO x -to-NH3 economic feasibility. Energy Environ. Sci. 2021, 14, 3588–3598.

[23]

Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.

[24]

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

[25]

Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

[26]

Liu, H. M.; Lang, X. Y.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L. C.; Guijarro, N.; Yin, H. B.; Peng, Y.; Li, J. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.

[27]

van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290–294.

[28]

Jing, J. F.; Yang, J.; Li, W. L.; Wu, Z. H.; Zhu, Y. F. Construction of interfacial electric field via dual-porphyrin heterostructure boosting photocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2106807.

[29]

Ren, Y. L.; Ma, Y. J.; Wang, B.; Chang, S. Z.; Zhai, Q. X.; Wu, H.; Dai, Y. M.; Yang, Y. R.; Tang, S. C.; Meng, X. K. Furnishing continuous efficient bidirectional polysulfide conversion for long-life and high-loading lithium-sulfur batteries via the built-in electric field. Small 2023, 19, 2300065.

[30]

Zhang, S.; Liu, Y.; Ma, R.; Jia, D. S.; Wen, T.; Ai, Y. J.; Zhao, G. X.; Fang, F.; Hu, B. W.; Wang, X. K. Molybdenum(VI)-oxo clusters incorporation activates g-C3N4 with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance. Adv. Funct. Mater. 2022, 32, 2204175.

[31]

Wang, H. J.; Guo, Y. N.; Li, C. J.; Yu, H. J.; Deng, K.; Wang, Z. Q.; Li, X. N.; Xu, Y.; Wang, L. Cu/CuO x in-plane heterostructured nanosheet arrays with rich oxygen vacancies enhance nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 34761–34769.

[32]

Liu, S. L.; Cui, L.; Yin, S. L.; Ren, H.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Heterointerface-triggered electronic structure reformation: Pd/CuO nano-olives motivate nitrite electroreduction to ammonia. Appl. Catal. B: Environ. 2022, 319, 121876.

[33]

Ye, S. H.; Chen, Z. D.; Zhang, G. K.; Chen, W. D.; Peng, C.; Yang, X. Y.; Zheng, L. R.; Li, Y. L.; Ren, X. Z.; Cao, H. Q. et al. Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 2022, 15, 760–770.

[34]

Deng, X. H.; Yang, Y. P.; Wang, L.; Fu, X. Z.; Luo, J. L. Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A·cm−2. Adv. Sci. 2021, 8, 2004523.

[35]

Xu, X.; Hu, L.; Li, Z. R.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Li, J.; Luo, Y. S.; Yan, X. D.; Hamdy, M. S. et al. Oxygen vacancies in Co3O4 nanoarrays promote nitrate electroreduction for ammonia synthesis. Sustain. Energy Fuels 2022, 6, 4130–4136.

[36]

Chen, Q. R.; Liang, J.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A.; Li, T. S.; Guo, H. R.; Sun, X. P. CoO nanoparticle decorated N-doped carbon nanotubes: A high-efficiency catalyst for nitrate reduction to ammonia. Chem. Commun. 2022, 58, 5901–5904.

[37]

Wang, T. H.; Huang, Z. F.; Liu, T. Y.; Tao, L.; Tian, J.; Gu, K. Z.; Wei, X. X.; Zhou, P.; Gan, L.; Du, S. Q. et al. Transforming electrocatalytic biomass upgrading and hydrogen production from electricity input to electricity output. Angew. Chem., Int. Ed. 2022, 61, e202115636.

[38]

Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

[39]

Xue, Q.; Bai, J.; Han, C. C.; Chen, P.; Jiang, J. X.; Chen, Y. Au nanowires@Pd-polyethylenimine nanohybrids as highly active and methanol-tolerant electrocatalysts toward oxygen reduction reaction in alkaline media. ACS Catal. 2018, 8, 11287–11295.

[40]

Zhou, W. L.; Wang, X. Y.; Shan, J. W.; Yue, L. G.; Lu, D. Z.; Chen, L.; Zhang, J. C.; Li, Y. Y. Engineering hollow core-shell hetero-structure box to induce interfacial charge modulation for promoting bidirectional sulfur conversion in lithium-sulfur batteries. J. Energy Chem. 2023, 80, 128–139.

[41]

Liang, Y. T.; Zeng, Y. X.; Tang, X. F.; Xia, W.; Song, B.; Yao, F. B.; Yang, Y.; Chen, Y. S.; Peng, C. X.; Zhou, C. Y. et al. One-step synthesis of Cu(OH)2-Cu/Ni foam cathode for electrochemical reduction of nitrate. Chem. Eng. J. 2023, 451, 138936.

[42]

Wang, Z.; Sun, C. C.; Bai, X. X.; Wang, Z. N.; Yu, X.; Tong, X.; Wang, Z.; Zhang, H.; Pang, H. L.; Zhou, L. J. et al. Facile synthesis of carbon nanobelts decorated with Cu and Pd for nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 30969–30978.

[43]

Yue, Q.; Gao, T. T.; Yuan, H. Y.; Xiao, D. An efficient way to improve water splitting electrocatalysis by electrodepositing cobalt phosphide nanosheets onto copper nanowires. Int. J. Hydrog. Energy 2021, 46, 19421–19432.

[44]

Wang, D.; Li, J.; Zhao, Y.; Xu, H. T.; Zhao, J. Z. Bifunctional Cu2S-Co(OH)2 nanotube array/Cu foam electrocatalyst for overall water splitting. Electrochim. Acta 2019, 316, 8–18.

[45]

Xin, Y.; Wang, F. L.; Chen, L. Y.; Li, Y. W.; Shen, K. Superior bifunctional cobalt/nitrogen-codoped carbon nanosheet arrays on copper foam enable stable energy-saving hydrogen production accompanied with glucose upgrading. Green Chem. 2022, 24, 6544–6555.

[46]

Gao, D. D.; Liu, R. J.; Liu, S.; Greiner, S.; Anjass, M.; Biskupek, J.; Kaiser, U.; Braun, H.; Jacob, T.; Streb, C. Electrocatalytic oxygen evolution by hierarchically structured cobalt-iron composites. ACS Appl. Mater. Interfaces 2021, 13, 19048–19054.

[47]

Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 1991, 113, 855–861.

[48]

Ni, S.; Qu, H. N.; Xu, Z. H.; Zhu, X. Y.; Xing, H. F.; Wang, L.; Yu, J. M.; Liu, H. Z.; Chen, C. M.; Yang, L. R. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B: Environ. 2021, 299, 120638.

[49]

Xu, Y.; Sheng, Y. W.; Wang, M. Z.; Ren, T. L.; Shi, K. K.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. Interface coupling induced built-in electric fields boost electrochemical nitrate reduction to ammonia over CuO@MnO2 core–shell hierarchical nanoarrays. J. Mater. Chem. A 2022, 10, 16883–16890.

[50]

Liu, H.; Li, J. S.; Du, F.; Yang, L. Y.; Huang, S. Y.; Gao, J. F.; Li, C. M.; Guo, C. X. A core–shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate. Green Energy Environ. 2023, 8, 1619–1629.

[51]

Fu, W. Y.; Du, Y. Y.; Jing, J. N.; Fu, C. H.; Zhou, M. H. Highly selective nitrate reduction to ammonia on CoO/Cu foam via constructing interfacial electric field to tune adsorption of reactants. Appl. Catal. B: Environ. 2023, 324, 122201.

[52]

Li, Z. C.; Pei, Y.; Ma, R. G.; Wang, Y. D.; Zhu, Y. F.; Yang, M. H.; Wang, J. C. A phosphate semiconductor-induced built-in electric field boosts electron enrichment for electrocatalytic hydrogen evolution in alkaline conditions. J. Mater. Chem. A 2021, 9, 13109–13114.

[53]

Ouyang, Q.; Cheng, S. C.; Yang, C. H.; Lei, Z. T. Vertically grown p-n heterojunction FeCoNi LDH/CuO arrays with modulated interfacial charges to facilitate the electrocatalytic oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 11938–11947.

[54]

Chen, J. P.; Zheng, J. P.; He, W. D.; Liang, H. K.; Li, Y.; Cui, H.; Wang, C. X. Self-standing hollow porous Co/a-WO x nanowire with maximum Mott–Schottky effect for boosting alkaline hydrogen evolution reaction. Nano Res. 2023, 16, 4603–4611.

Nano Research
Pages 5087-5094
Cite this article:
Xiao C, Guo Y, Sun J, et al. Efficient electrocatalytic reduction of nitrate to ammonia at low concentration by copper-cobalt oxide nanowires with shell–core structure. Nano Research, 2024, 17(6): 5087-5094. https://doi.org/10.1007/s12274-024-6530-8
Topics:

1019

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 09 November 2023
Revised: 24 January 2024
Accepted: 30 January 2024
Published: 22 March 2024
© Tsinghua University Press 2024
Return