AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance Ti3C2Tx achieved by polyaniline intercalation and gelatinization as a high-energy cathode for zinc-ion capacitor

Peng LiaoZiYu GengXin ZhangWenjie YanZenghui Qiu( )Haijun Xu( )
College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

The high-performance Ti3C2TX achieved by polyaniline intercalation (PANI) and graphene oxide (GO) gelation not only retains the basic structure of MXene, but also effectively inhibits stacking, maximizes the accessibility of zinc-ion transport, and improves the reaction kinetics. For the first time, the three-dimensional (3D) hierarchical Ti3C2TX@PANI-reduced graphene oxide (RGO) heterostructure hydrogels developed using a simple 2-step strategy will be used as a cathode for aqueous zinc-ion capacitors (ZICs), and this Ti3C2TX@PANI-RGO//Zn ZIC provides feasible ideas for practical applications with its excellent specific capacitance, prominent rate performance, and outstanding energy density.

Abstract

The actual manufacture of supercapacitors (SCs) is restricted by the inadequate energy density, and the energy density of devices can be properly promoted by assembling zinc-ion capacitors (ZICs) which used capacitive cathode and battery-type anode. Two-dimensional (2D) MXene has brought great focuses in the electrode research on the foundation of large redox-active surface, but the specific capacitance is still affected by the tight stacking of interlaminations. Ti3C2Tx@polyaniline (PANI) heterostructures are prepared by uniformly depositing the conductive polymer PANI nanorods as the intercalation agent into the external of Ti3C2Tx nanosheets to inhibit stacking. Subsequently, by using graphene oxide (GO)-assisted low-temperature hydrothermal self-assembly manufacture, 2D heterostructures are assembled into the three-dimensional (3D) porous crosslinked Ti3C2Tx@PANI-reduced graphene oxide (RGO) hydrogels. Attributed to the synergistic work of PANI nanorods, Ti3C2TX nanosheets, and 3D crosslinking frameworks of RGO to match capacitive and battery effects, 3D porous hierarchical Ti3C2Tx@PANI-RGO heterostructure hydrogels have rich ion transport channels, a large number of active sites, and excellent reaction kinetics. ZIC is assembled by using Ti3C2Tx@PANI-RGO heterostructure hydrogels as cathodes and zinc foil as anodes. In this work, Ti3C2Tx@PANI-RGO//Zn ZIC exhibits a wide working window (2.0 V), marked specific capacitance (589.89 F·g−1 at 0.5 A·g−1), salient energy density (327.71 Wh·kg−1 at 513.61 W·kg−1 and 192.20 Wh·kg−1 at 13,005.87 W·kg−1), and durable cycling stability (97.87% capacitance retention after 10,000 cycles at 10 A·g−1). This study emphasizes the device design of ZICs and the broad prospect of Ti3C2Tx-based hydrogels as viable cathodes for ZICs.

Electronic Supplementary Material

Download File(s)
12274_2024_6531_MOESM1_ESM.pdf (280.1 KB)

References

[1]

Niu, L.; Wu, T. Z.; Chen, M.; Yang, L.; Yang, J. J.; Wang, Z. X.; Kornyshev, A. A.; Jiang, H. L.; Bi, S.; Feng, G. Conductive metal-organic frameworks for supercapacitors. Adv. Mater. 2022, 34, 2200999.

[2]

Pacchioni, G. Sustainable flexible supercapacitors. Nat. Rev. Mater. 2022, 7, 844.

[3]

Hu, M. M.; Zhang, H.; Hu, T.; Fan, B. B.; Wang, X. H.; Li, Z. J. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693.

[4]

Pameté, E.; Köps, L.; Kreth, F. A.; Pohlmann, S.; Varzi, A.; Brousse, T.; Balducci, A.; Presser, V. The many deaths of supercapacitors: Degradation, aging, and performance fading. Adv. Energy Mater. 2023, 13, 2301008.

[5]

Mo, T. M.; Wang, Z. X.; Zeng, L.; Chen, M.; Kornyshev, A. A.; Zhang, M. C.; Zhao, Y. Q.; Feng, G. Energy storage mechanism in supercapacitors with porous graphdiynes: Effects of pore topology and electrode metallicity. Adv. Mater. 2023, 35, 2301118.

[6]

Hua, M. T.; Wu, S. W.; Jin, Y.; Zhao, Y. S.; Yao, B. W.; He, X. M. Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv. Mater. 2021, 33, 2100983.

[7]

Shao, H.; Wu, Y. C.; Lin, Z. F.; Taberna, P. L.; Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 2020, 49, 3005–3039.

[8]

Russell, J. C.; Posey, V. A.; Gray, J.; May, R.; Reed, D. A.; Zhang, H.; Marbella, L. E.; Steigerwald, M. L.; Yang, Y.; Roy, X. et al. High-performance organic pseudocapacitors via molecular contortion. Nat. Mater. 2021, 20, 1136–1141.

[9]

Jayaramulu, K.; Horn, M.; Schneemann, A.; Saini, H.; Bakandritsos, A.; Ranc, V.; Petr, M.; Stavila, V.; Narayana, C.; Scheibe, B. et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors. Adv. Mater. 2021, 33, 2004560.

[10]

Kandambeth, S.; Jia, J. T.; Wu, H.; Kale, V. S.; Parvatkar, P. T.; Czaban-Jóźwiak, J.; Zhou, S.; Xu, X. M.; Ameur, Z. O.; Abou-Hamad, E. et al. Covalent organic frameworks as negative electrodes for high-performance asymmetric supercapacitors. Adv. Energy Mater. 2020, 10, 2001673.

[11]

Xu, L. M.; Zhou, W. Q.; Chao, S. X.; Liang, Y. M.; Zhao, X. Q.; Liu, C. C.; Xu, J. K. Advanced oxygen-vacancy Ce-doped MoO3 ultrathin nanoflakes anode materials used as asymmetric supercapacitors with ultrahigh energy density. Adv. Energy Mater. 2022, 12, 2200101.

[12]

Ock, I. W.; Lee, J.; Kang, J. K. Hybrid capacitors: Metal-organic framework-derived anode and polyaniline chain networked cathode with mesoporous and conductive pathways for high energy density, ultrafast rechargeable, and long-life hybrid capacitors. Adv. Energy Mater. 2020, 10, 2070194.

[13]
Wang, P. J.; Xie, X. S.; Xing, Z. Y.; Chen, X. H.; Fang, G. Z.; Lu, B. A.; Zhou, J.; Liang, S. Q.; Fan, H. J. Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 2021 , 11, 2101158.
[14]

Yin, J.; Zhang, W. L.; Wang, W. X.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Electrochemical Zinc Ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 2020, 10, 2001705.

[15]

Fei, R. X.; Wang, H. W.; Wang, Q.; Qiu, R. Y.; Tang, S. S.; Wang, R.; He, B. B.; Gong, Y. S.; Fan, H. J. In situ hard-template synthesis of hollow bowl-like carbon: A potential versatile platform for sodium and zinc ion capacitors. Adv. Energy Mater. 2020, 10, 2002741

[16]

Babu, B.; Simon, P.; Balducci, A. Fast charging materials for high power applications. Adv. Energy Mater. 2020, 10, 2001128.

[17]

Yi, T. F.; Sari, H. M. K.; Li, X. Z.; Wang, F. F.; Zhu, Y. R.; Hu, J. H.; Zhang, J. J.; Li, X. F. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy 2021, 85, 105955.

[18]

Dong, S. Y.; Lv, N.; Wu, Y. L.; Zhu, G. Y.; Dong, X. C. Lithium-ion and sodium-ion hybrid capacitors: From insertion-type materials design to devices construction. Adv. Funct. Mater. 2021, 31, 2100455.

[19]

Cai, P.; Zou, K. Y.; Deng, X. L.; Wang, B. W.; Zheng, M.; Li, L. H.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Comprehensive understanding of sodium-ion capacitors: Definition, mechanisms, configurations, materials, key technologies, and future developments. Adv. Energy Mater. 2021, 11, 2003804.

[20]

Liu, M. Q.; Chang, L. M.; Le, Z. Y.; Jiang, J. M.; Li, J. H.; Wang, H. R.; Zhao, C. M.; Xu, T. H.; Nie, P.; Wang, L. M. Emerging potassium-ion hybrid capacitors. Chemsuschem 2020, 13, 5837–5862.

[21]

Yin, J.; Zhang, W. L.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Electrochemical zinc ion capacitors: Fundamentals, materials, and systems. Adv. Energy Mater. 2021, 11, 2100201.

[22]

Shang, K. Z.; Liu, Y. J.; Cai, P. W.; Li, K. K.; Wen, Z. H. N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors. J. Mater. Chem. A 2022, 10, 6489–6498.

[23]

Wang, H. Y.; Ye, W. Q.; Yang, Y.; Zhong, Y. J.; Hu, Y. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives. Nano Energy 2021, 85, 105942.

[24]

Tang, H.; Yao, J. J.; Zhu, Y. R. Recent developments and future prospects for zinc-ion hybrid capacitors: A review. Adv. Energy Mater. 2021, 11, 2003994.

[25]

Wang, Q.; Wang, S. L.; Guo, X. H.; Ruan, L. M.; Wei, N.; Ma, Y.; Li, J. Y.; Wang, M.; Li, W. Q.; Zeng, W. MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Electron. Mater. 2019, 5, 1900537.

[26]

Dong, L. B.; Yang, W.; Yang, W.; Li, Y.; Wu, W. J.; Wang, G. X. Multivalent metal ion hybrid capacitors: A review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 2019, 7, 13810–13832.

[27]

Wang, Z. T.; Zhang, M. Q.; Ma, W. T.; Zhu, J. B.; Song, W. X. Application of carbon materials in aqueous zinc ion energy storage devices. Small 2021, 17, 2100219.

[28]

Ma, R.; Chen, Z. T.; Zhao, D. N.; Zhang, X. J.; Zhuo, J. T.; Yin, Y. J.; Wang, X. F.; Yang, G. W.; Yi, F. Ti3C2T x MXene for electrode materials of supercapacitors. J. Mater. Chem. A 2021, 9, 11501–11529.

[29]

Zhang, C. F.; Ma, Y. L.; Zhang, X. T.; Abdolhosseinzadeh, S.; Sheng, H. W.; Lan, W.; Pakdel, A.; Heier, J.; Nuesch, F. Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 2020, 3, 29–55.

[30]

Sun, S. J.; Liao, C.; Hafez, A. M.; Zhu, H. L.; Wu, S. P. Two-dimensional MXenes for energy storage. Chem. Eng. J. 2018, 338, 27–45.

[31]

Nasrin, K.; Sudharshan, V.; Subramani, K.; Sathish, M. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review. Adv. Funct. Mater. 2022, 32, 2110267.

[32]

Mohammadi, A. V.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[33]

Hemanth, N. R.; Kandasubramanian, B. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: A review. Chem. Eng. J. 2020, 392, 123678.

[34]

Mateen, A.; Ansari, M. Z.; Abbas, Q.; Muneeb, A.; Hussain, A.; Eldin, E. T.; Alzahrani, F. M.; Alsaiari, N. S.; Ali, S.; Javed, M. S. In situ nitrogen functionalization of 2D-Ti3C2T x -MXenes for high-performance Zn-ion supercapacitor. Molecules 2022, 27, 7446

[35]

Xu, X. D.; Zhang, Y. L.; Sun, H. Y.; Zhou, J. W.; Yang, F.; Li, H.; Chen, H.; Chen, Y. C.; Liu, Z.; Qiu, Z. P. et al. Progress and perspective: MXene and mxene-based nanomaterials for high-performance energy storage devices. Adv. Electron. Mater. 2021, 7, 2000967.

[36]

Yi, S.; Wang, L.; Zhang, X.; Li, C.; Liu, W. J.; Wang, K.; Sun, X. Z.; Xu, Y. N.; Yang, Z. X.; Cao, Y. et al. Cationic intermediates assisted self-assembly two-dimensional Ti3C2T x /rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci. Bull. 2021, 66, 914–924

[37]

Li, K.; Liang, M. Y.; Wang, H.; Wang, X. H.; Huang, Y. S.; Coelho, J.; Pinilla, S.; Zhang, Y. L.; Qi, F. W.; Nicolosi, V. et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 2020, 30, 2000842.

[38]

Eftekhari, A.; Li, L.; Yang, Y. Polyaniline supercapacitors. J. Power Sources 2017, 347, 86–107.

[39]

Li, Y.; Kamdem, P.; Jin, X. J. Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors. J. Alloys Compd. 2021, 850, 156608.

[40]

Beygisangchin, M.; Rashid, S. A.; Shafie, S.; Sadrolhosseini, A. R.; Lim, H. N. Preparations, properties, and applications of polyaniline and polyaniline thin films—A review. Polymers 2021, 13, 2003.

[41]

Liu, Y. X.; Yang, Y.; Deng, B. W.; Jing, L.; Yin, B.; Yang, M. B. Vertically aligned polyaniline nano-array decorated on ultra-thin MXene nanosheets for high energy density supercapacitors. J. Energy Storage 2022, 56, 105893.

[42]

Wei, Y. D.; Luo, W. L.; Li, X.; Lin, Z. T.; Hou, C. P.; Ma, M. L.; Ding, J. X.; Li, T. X.; Ma, Y. PANI-MnO2 and Ti3C2T x (MXene) as electrodes for high-performance flexible asymmetric supercapacitors. Electrochim. Acta 2022, 406, 139874.

[43]

Liu, W. F.; Zheng, Y. F.; Zhang, Z.; Zhang, Y. N.; Wu, Y. H.; Gao, H. X.; Su, J.; Gao, Y. H. Ultrahigh gravimetric and volumetric capacitance in Ti3C2T x MXene negative electrode enabled by surface modification and in-situ intercalation. J. Power Sources 2022, 521, 230965

[44]

Wang, Y. M.; Wang, X.; Li, X. L.; Bai, Y.; Xiao, H. H.; Liu, Y.; Yuan, G. H. Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem. Eng. J. 2021, 405, 126664.

[45]

Lee, K. S.; Park, C. W.; Lee, S. J.; Kim, J. D. Hierarchical zinc oxide/graphene oxide composites for energy storage devices. J. Alloys Compd. 2018, 739, 522–528.

[46]

Korkmaz, S.; Kariper, İ. A. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. J. Energy Storage 2020, 27, 101038.

[47]

Ji, J. Y.; Zhou, H.; Xiong, L. J.; Li, L.; Yu, X. H.; Wei, L. Synthesis of nitrogen-doped reduced graphene oxide/SnO2 composite hydrogels and characterization of electrode materials. Mater. Res. Express 2019, 6, 0850g7.

[48]

Askari, M. B.; Salarizadeh, P.; Seifi, M.; Zadeh, M. H. R.; Di Bartolomeo, A. ZnFe2O4 nanorods on reduced graphene oxide as advanced supercapacitor electrodes. J. Alloys Compd. 2021, 860, 158497.

[49]

Luo, W. L.; Wei, Y. D.; Zhuang, Z.; Lin, Z. T.; Li, X.; Hou, C. P.; Li, T. X.; Ma, Y. Fabrication of Ti3C2T x MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors. Electrochim. Acta 2022, 406, 139871.

[50]

Huang, Z. D.; Chen, A.; Mo, F. N.; Liang, G. J.; Li, X. L.; Yang, Q.; Guo, Y.; Chen, Z.; Li, Q.; Dong, B. B. et al. Phosphorene as cathode material for high-voltage, anti-self-discharge Zinc Ion hybrid capacitors. Adv. Energy Mater. 2020, 10, 2001024.

[51]

Liu, Y.; Wu, L. J. Recent advances of cathode materials for zinc-ion hybrid capacitors. Nano Energy 2023, 109, 108290.

[52]

Liu, X.; Sun, Y. J.; Tong, Y.; Wang, X. Y.; Zheng, J. F.; Wu, Y. A. J.; Li, H. Y.; Niu, L.; Hou, Y. Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: A review. Nano Energy 2021, 86, 106070

[53]

Guo, N. L.; Lin, Y. M.; Cui, Y. F.; Su, S. Y.; Dai, H. M.; Yang, J. B.; Zhu, X. H. Effect of MWCNTs additive on preservation stability of rGO powder. J. Mater. Sci. Mater. Electron. 2022, 33, 6766–6779.

[54]

Zhou, Z. M.; Zhou, X. Y.; Zhang, M.; Mu, S. N.; Liu, Q. R.; Tang, Y. B. In situ two-step activation strategy boosting hierarchical porous carbon cathode for an aqueous Zn-based hybrid energy storage device with high capacity and ultra-long cycling life. Small. 2020, 16, 2003174

[55]

Lee, Y. G.; An, G. H. Synergistic effects of phosphorus and boron co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 41342–41349.

[56]

An, G. H.; Cha, S.; Sohn, J. I. Surface tailoring of zinc electrodes for energy storage devices with high-energy densities and long cycle life. Appl. Surf. Sci. 2019, 467–468, 1157–1160

[57]

Zhang, Y. M.; Wang, Z. P.; Li, D. P.; Sun, Q.; Lai, K. R.; Li, K. K.; Yuan, Q. H.; Liu, X. J.; Ci, L. J. Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage. J. Mater. Chem. A 2020, 8, 22874–22885.

[58]

An, G. H.; Hong, J.; Pak, S.; Cho, Y.; Lee, S.; Hou, B.; Cha, S. 2D metal Zn nanostructure electrodes for high-performance Zn ion supercapacitors. Adv. Energy Mater. 2020, 10, 1902981

[59]

Zhao, Y.; Hao, H. L.; Song, T. L.; Wang, X.; Li, C. W.; Li, W. Y. High energy-power density Zn-ion hybrid supercapacitors with N/P co-doped graphene cathode. J. Power Sources 2022, 521, 230941.

[60]

Zhao, P.; Yang, B. J.; Chen, J. T.; Lang, J. W.; Zhang, T. Y.; Yan, X. B. A safe, high-performance, and long-cycle life zinc-ion hybrid capacitor based on three-dimensional porous activated carbon. Acta Phys.—Chim. Sin. 2020, 36, 1904050.

Nano Research
Pages 5305-5316
Cite this article:
Liao P, Geng Z, Zhang X, et al. High-performance Ti3C2Tx achieved by polyaniline intercalation and gelatinization as a high-energy cathode for zinc-ion capacitor. Nano Research, 2024, 17(6): 5305-5316. https://doi.org/10.1007/s12274-024-6531-7
Topics:

492

Views

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 26 November 2023
Revised: 16 January 2024
Accepted: 30 January 2024
Published: 07 March 2024
© Tsinghua University Press 2024
Return