AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Organic heterojunction synaptic device with ultra high recognition rate for neuromorphic computing

Xuemeng Hu1Jialin Meng1( )Tianyang Feng1Tianyu Wang1Hao Zhu1Qingqing Sun1David Wei Zhang1Lin Chen1,2( )
School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200433, China
National Integrated Circuit Innovation Center, Shanghai 201203, China
Show Author Information

Graphical Abstract

The organic heterojunction transistors have better electrical characteristic than transistors using single organic semiconductor as channel. Besides, the device can achieve series of synapse behaviors under electrical and optical modulation. The recognition rate of images for the device is nearly 100% without noise, indicating the excellent images recognition ability of the device.

Abstract

Traditional computing structures are blocked by the von Neumann bottleneck, and neuromorphic computing devices inspired by the human brain which integrate storage and computation have received more and more attention. Here, a flexible organic device with 2,7-dioctyl[1] benzothieno [3,2-b][1] benzothiophene (C8-BTBT) and 2,9-didecyldinaphtho [2,3-b:2′,3′-f] thieno [3,2-b] thiophene (C10-DNTT) heterostructural channel having excellent synaptic behaviors was fabricated on muscovite (MICA) substrate, which has a memory window greater than 20 V. This device shows better electrical characteristics than organic field effect transistors with single organic semiconductor channel. Furthermore, the device simulates organism synaptic behaviors successfully, such as paired-pulse facilitation (PPF), long-term potentiation/depression (LTP/LTD) process, and transition from short-term memory (STM) to long-term memory (LTM) by optical and electrical modulations. Importantly, the neuromorphic computing function was verified using the Modified National Institute of Standards and Technology (MNIST) pattern recognition, with a recognition rate nearly 100% without noise. This research proposes a flexible organic heterojunction with the ultra-high recognition rate in MNIST pattern recognition and provides the possibility for future flexible wearable neuromorphic computing devices.

Electronic Supplementary Material

Download File(s)
12274_2024_6532_MOESM1_ESM.pdf (629.5 KB)

References

[1]

Merolla, P. A.; Arthur, J. V.; Alvarez-Icaza, R.; Cassidy, A. S.; Sawada, J.; Akopyan, F.; Jackson, B. L.; Imam, N.; Guo, C.; Nakamura, Y. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 2014, 345, 668–673.

[2]
Lee, J.; Nikam, R. D.; Kim, D.; Hwang, H. Highly scalable (30 nm) and ultra-low-energy (~ 5 fJ/pulse) vertical sensing ECRAM with ideal synaptic characteristics using ion-permeable graphene electrodes. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, USA, 2022, pp 2.2.1–2.2.4.
[3]

Meng, J. L.; Wang, T. Y.; He, Z. Y.; Li, Q. X.; Zhu, H.; Ji, L.; Chen, L.; Sun, Q. Q.; Zhang, D. W. A high-speed 2D optoelectronic in-memory computing device with 6-bit storage and pattern recognition capabilities. Nano Res. 2022, 15, 2472–2478.

[4]

Fischer, B.; Chemnitz, M.; Zhu, Y.; Perron, N.; Roztocki, P.; MacLellan, B.; Di Lauro, L.; Aadhi, A.; Rimoldi, C.; Falk, T. H. et al. Neuromorphic computing via fission-based broadband frequency generation. Adv. Sci. 2023, 10, 2303835.

[5]

Li, Q. X.; Wang, T. Y.; Wang, X. L.; Chen, L.; Zhu, H.; Wu, X. H.; Sun, Q. Q.; Zhang, D. W. Flexible organic field-effect transistor arrays for wearable neuromorphic device applications. Nanoscale 2020, 12, 23150–23158.

[6]

Kuzum, D.; Yu, S. M.; Philip Wong, H. S. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001.

[7]

Meng, J. L.; Wang, T. Y.; Zhu, H.; Ji, L.; Bao, W. Z.; Zhou, P.; Chen, L.; Sun, Q. Q.; Zhang, D. W. Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 2022, 22, 81–89.

[8]

Sarkar, T.; Lieberth, K.; Pavlou, A.; Frank, T.; Mailaender, V.; McCulloch, I.; Blom, P. W. M.; Torricelli, F.; Gkoupidenis, P. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 2022, 5, 774–783.

[9]

Chen, H.; Cai, Y. H.; Han, Y. H.; Huang, H. Towards artificial visual sensory system: Organic optoelectronic synaptic materials and devices. Angew. Chem., Int. Ed. 2024, 63, e202313634.

[10]

Cao, G. M.; Meng, P.; Chen, J. G.; Liu, H. S.; Bian, R. J.; Zhu, C.; Liu, F. C.; Liu, Z. 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 2021, 31, 2005443.

[11]

Zhang, W. Q.; Gao, B.; Tang, J. S.; Yao, P.; Yu, S. M.; Chang, M. F.; Yoo, H. J.; Qian, H.; Wu, H. Q. Neuro-inspired computing chips. Nat. Electron. 2020, 3, 371–382.

[12]
Schuman, C. D.; Plank, J. S.; Rose, G. S. Application–hardware co-design: System-level optimization of neuromorphic computers with neuromorphic devices. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, USA, 2022, pp 2.4.1–2.4.4.
[13]
Chen, P. Y.; Lin, B. B.; Wang, I. T.; Hou, T. H.; Ye, J. P.; Vrudhula, S.; Seo, J. S.; Cao, Y.; Yu, S. M. Mitigating effects of non-ideal synaptic device characteristics for on-chip learning. In Proceedings of the 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, USA, 2015, pp 194–199.
[14]

Wang, T. Y.; Meng, J. L.; Zhou, X. F.; Liu, Y.; He, Z. Y.; Han, Q.; Li, Q. X.; Yu, J. J.; Li, Z. H.; Liu, Y. K. et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat. Commun. 2022, 13, 7432.

[15]

Li, Z. H.; Wang, T. Y.; Meng, J. L.; Zhu, H.; Sun, Q. Q.; Zhang, D. W.; Chen, L. Flexible aluminum-doped hafnium oxide ferroelectric synapse devices for neuromorphic computing. Mater. Horiz. 2023, 10, 3643–3650.

[16]

Meng, J. L.; Wang, T. Y.; Chen, L.; Sun, Q. Q.; Zhu, H.; Ji, L.; Ding, S. J.; Bao, W. Z.; Zhou, P.; Zhang, D. W. Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy 2021, 83, 105815.

[17]

Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

[18]

Shim, H.; Ershad, F.; Patel, S.; Zhang, Y. C.; Wang, B. H.; Chen, Z. H.; Marks, T. J.; Facchetti, A.; Yu, C. J. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat. Electron. 2022, 5, 660–671.

[19]

Chen, X. Z.; Xue, Y.; Sun, Y. B.; Shen, J. B.; Song, S. N.; Zhu, M.; Song, Z. T.; Cheng, Z. G.; Zhou, P. Neuromorphic photonic memory devices using ultrafast, non-volatile phase-change materials. Adv. Mater. 2023, 35, 2203909.

[20]

Sarwat, S. G.; Kersting, B.; Moraitis, T.; Jonnalagadda, V. P.; Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat. Nanotechnol. 2022, 17, 507–513.

[21]

Wang, H. L.; Zhao, Q.; Ni, Z. J.; Li, Q. Y.; Liu, H. T.; Yang, Y. C.; Wang, L. F.; Ran, Y.; Guo, Y. L.; Hu, W. P. et al. A Ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 2018, 30, 1803961.

[22]

Wang, H. T.; Yang, M. H.; Tong, Y. H.; Zhao, X. L.; Tang, Q. X.; Liu, Y. C. Manipulating the hysteresis via dielectric in organic field-effect transistors toward synaptic applications. Org. Electron. 2019, 73, 159–165.

[23]

Chiang, Y. C.; Hung, C. C.; Lin, Y. C.; Chiu, Y. C.; Isono, T.; Satoh, T.; Chen, W. C. High-performance nonvolatile organic photonic transistor memory devices using conjugated rod-coil materials as a floating gate. Adv. Mater. 2020, 32, 2002638.

[24]

Li, Q. X.; Wang, T. Y.; Yang, Y. F.; Meng, J. L.; Wu, X. H.; Zhu, H.; Sun, Q. Q.; Zhang, D. W.; Chen, L. Artificial vision adaptation based on optoelectronic neuromorphic transistors. IEEE Electron Device Lett. 2022, 43, 1917–1920.

[25]

Li, Q. X.; Wang, T. Y.; Hu, X. M.; Wu, X. H.; Zhu, H.; Ji, L.; Sun, Q. Q.; Zhang, D. W.; Chen, L. Organic optoelectronic synaptic devices for energy-efficient neuromorphic computing. IEEE Electron Device Lett. 2022, 43, 1089–1092.

[26]

Alpaslan Kösemen, Z.; Kösemen, A.; Öztürk, S.; Canımkurbey, B.; Erkovan, M.; Yerli, Y. Performance improvement in photosensitive organic field effect transistor by using multi-layer structure. Thin Solid Films 2019, 672, 90–99.

[27]

Han, H.; Nam, S.; Seo, J.; Jeong, J.; Kim, H.; Bradley, D. D. C.; Kim, Y. Organic phototransistors with all-polymer bulk heterojunction layers of p-type and n-type sulfur-containing conjugated polymers. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 147–153.

[28]

Kim, C. H. Organic heterojunction transistors. ACS Appl. Electron. Mater. 2022, 4, 2581–2588.

[29]

Peng, Y. J.; Gao, L.; Liu, C. J.; Deng, J. Y.; Xie, M.; Bai, L. B.; Wang, G.; Cheng, Y. H.; Huang, W.; Yu, J. S. Stretchable organic electrochemical transistors via three-dimensional porous elastic semiconducting films for artificial synaptic applications. Nano Res. 2023, 16, 10206–10214.

[30]

Jiang, C.; Choi, H. W.; Cheng, X.; Ma, H. B.; Hasko, D.; Nathan, A. Printed subthreshold organic transistors operating at high gain and ultralow power. Science 2019, 363, 719–723.

[31]

Luo, Z. Z.; Peng, B. Y.; Zeng, J. P.; Yu, Z. H.; Zhao, Y.; Xie, J.; Lan, R. F.; Ma, Z.; Pan, L. J.; Cao, K. et al. Sub-thermionic, ultra-high-gain organic transistors and circuits. Nat. Commun. 2021, 12, 1928.

[32]

Kobashi, K.; Hayakawa, R.; Chikyow, T.; Wakayama, Y. Multi-valued logic circuits based on organic anti-ambipolar transistors. Nano Lett. 2018, 18, 4355–4359.

[33]

Figer, D. F. An upper limit to the masses of stars. Nature 2005, 434, 192–194.

[34]

Wang, W.; Hwang, S. K.; Kim, K. L.; Lee, J. H.; Cho, S. M.; Park, C. Highly reliable top-gated thin-film transistor memory with semiconducting, tunneling, charge-trapping, and blocking layers all of flexible polymers. ACS Appl. Mater. Interfaces 2015, 7, 10957–10965.

[35]

Tang, Z. J.; Zhu, X. H.; Xu, H. N.; Xia, Y. D.; Yin, J.; Liu, Z. G.; Li, A. D.; Yan, F. Impact of the interfaces in the charge trap layer on the storage characteristics of ZrO2/Al2O3 nanolaminate-based charge trap flash memory cells. Mater. Lett. 2013, 92, 21–24.

[36]

Wan, C. J.; Liu, Y. H.; Feng, P.; Wang, W.; Zhu, L. Q.; Liu, Z. P.; Shi, Y.; Wan, Q. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv. Mater. 2016, 28, 5878–5885.

[37]

Wei, Z. Y.; Prakoso, S. P.; Li, Y. T.; Chiu, Y. C. Tunneling-effect-boosted interfacial charge trapping toward photo-organic transistor memory. Adv. Electron. Mater. 2022, 8, 2101349.

[38]

Li, Q. X.; Wang, T. Y.; Fang, Y. Q.; Hu, X. M.; Tang, C. K.; Wu, X. H.; Zhu, H.; Ji, L.; Sun, Q. Q.; Zhang, D. W. et al. Ultralow power wearable organic ferroelectric device for optoelectronic neuromorphic computing. Nano Lett. 2022, 22, 6435–6443.

[39]

Yu, R. J.; Li, E. L.; Wu, X. M.; Yan, Y. J.; He, W. X.; He, L. H.; Chen, J. W.; Chen, H. P.; Guo, T. L. Electret-based organic synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 2020, 12, 15446–15455.

Nano Research
Pages 5614-5620
Cite this article:
Hu X, Meng J, Feng T, et al. Organic heterojunction synaptic device with ultra high recognition rate for neuromorphic computing. Nano Research, 2024, 17(6): 5614-5620. https://doi.org/10.1007/s12274-024-6532-6
Topics:

524

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 December 2023
Revised: 28 January 2024
Accepted: 30 January 2024
Published: 14 March 2024
© Tsinghua University Press 2024
Return