Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Synergistic effect of Co and Co6Mo6C for electroreduction of nitrate to ammonia on Co-MOF derived Co6Mo6C/Co/NC

Xinyan WangYue CaoYan HaiXiaoman Li()Min Luo()
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
Show Author Information

Graphical Abstract

View original image Download original image
Co0 effectively promotes the conversion of NO3 to NO2, and the Mo sites of Co6Mo6C have excellent adsorption and hydrogenation of NO2.

Abstract

Electrocatalytic nitrate reduction reaction (e-NO3RR) offers a promising alternative method for nitrogen cycling and ammonia (NH3) production under ambient conditions. However, the method is still in the dilemma of lowering the reaction overpotential and increasing the reaction activity. We successfully developed the composition-adjustable Co6Mo6C/Co/N-doped carbon (NC) catalysts by in situ carbonization of Co-based metal-organic framework (MOF) with the constrained phosphomolybdic acid. After adjusting the ratio of Co0 and Co6Mo6C, Co6Mo6C/Co/NC-3 could satisfy both NO3 conversion at low potential and NHx hydrogenation, and synthesize ammonia efficiently through the synergistic effect of Co0 and Co6Mo6C. It achieved an ammonia yield rate as 1233.2 µg·h−1·mgcat−1 and Faradaic efficiency of NH4+ 93.6% at −0.33 V vs. reversible hydrogen electrode (RHE). Importantly, density functional theory (DFT) calculations and experimental results have demonstrated for the first time the excellent adsorption of nitrite (NO2) by the Mo sites of Co6Mo6C during e-NO3RR, avoiding the undesirable accumulation of NO2.

Electronic Supplementary Material

Download File(s)
6535_ESM.pdf (2.4 MB)

References

[1]

Meng, L. H.; Li, X. M.; Ding, W. M.; Tan, M. Y.; Su, S. D.; Cao, Y.; Yu, Z. W.; Yuan, S. B.; Hai, Y.; Liu, Z. Y. et al. Construction of ZnCdS@CAU-17 heterostructures containing intermediate mediator Bi2S3 as a highly efficient photocatalyst for nitrogen reduction reaction. J. Alloys Compd. 2023, 963, 171253.

[2]

Cao, Y.; Yuan, S. B.; Meng, L. H.; Wang, Y. Y.; Hai, Y.; Su, S. D.; Ding, W. M.; Liu, Z. Y.; Li, X. M.; Luo, M. Recent advances in electrocatalytic nitrate reduction to ammonia: Mechanism insight and catalyst design. ACS Sustain. Chem. Eng. 2023, 11, 7965–7985.

[3]

van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290–294.

[4]

Dima, G. E.; de Vooys, A. C. A.; Koper, M. T. M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J. Electroanal. Chem. 2003, 554–555, 15–23

[5]

Liu, J. X.; Richards, D.; Singh, N.; Goldsmith, B. R. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal. 2019, 9, 7052–7064.

[6]

Zhou, Y. Y.; Duan, R. Z.; Li, H.; Zhao, M.; Ding, C. M.; Li, C. Boosting electrocatalytic nitrate reduction to ammonia via promoting water dissociation. ACS Catal. 2023, 13, 10846–10854.

[7]

Xiang, T. Y.; Liang, Y. T.; Zeng, Y. X.; Deng, J.; Yuan, J. L.; Xiong, W. P.; Song, B.; Zhou, C. Y.; Yang, Y. Transition metal single-atom catalysts for the electrocatalytic nitrate reduction: Mechanism, synthesis, characterization, application, and prospects. Small 2023, 19, 2303732.

[8]

Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.

[9]

Deng, X. H.; Yang, Y. P.; Wang, L.; Fu, X. Z.; Luo, J. L. Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A·cm−2. Adv. Sci. 2021, 8, 2004523.

[10]

Yang, B. P.; Zhou, Y. L.; Huang, Z. C.; Mei, B. B.; Kang, Q.; Chen, G.; Liu, X. H.; Jiang, Z.; Liu, M.; Zhang, N. Electron-deficient cobalt nanocrystals for promoted nitrate electrocatalytic reduction to synthesize ammonia. Nano Energy 2023, 117, 108901.

[11]

Liu, L.; Shi, H. M.; Li, S. X.; Sun, M. Y.; Zhang, R.; Wang, Y. M.; Ren, F. S. Integrated analysis of molybdenum nutrition and nitrate metabolism in strawberry. Front. Plant Sci. 2020, 11, 1117.

[12]

Du, W. Y.; Zhang, Y.; Chen, K.; Zhang, G. K.; Chu, K. Mo single-atom catalyst boosts nitrite electroreduction for ammonia synthesis. J. Clean. Prod. 2023, 424, 138875.

[13]

Garibello, C. F.; Simonov, A. N.; Chang, S. L. Y.; Johannessen, B.; Malherbe, F.; Eldridge, D. S.; Hocking, R. K. Tuning catalyst selectivity for ammonia vs. hydrogen: An investigation into the coprecipitation of Mo and Fe sulfides. Inorg. Chem. 2023, 62, 9379–9390.

[14]

Fan, B. B.; Wang, H. Z.; Zhang, H.; Song, Y.; Zheng, X. R.; Li, C. J.; Tan, Y. Q.; Han, X. P.; Deng, Y. D.; Hu, W. B. Phase transfer of Mo2C induced by boron doping to boost nitrogen reduction reaction catalytic activity. Adv. Funct. Mater. 2022, 32, 2110783.

[15]

Liu, H. F.; Qin, J. Z.; Mu, J. C.; Liu, B. J. In situ interface engineered Co/NC derived from ZIF-67 as an efficient electrocatalyst for nitrate reduction to ammonia. J. Colloid Interface Sci. 2023, 636, 134–140

[16]

Li, X. T.; Wang, S. Y.; Wang, G. H.; Shen, P.; Ma, D. W.; Chu, K. Mo2C for electrocatalytic nitrate reduction to ammonia. Dalton Trans. 2022, 51, 17547–17552.

[17]

Zu, M. Y.; Liu, P. F.; Wang, C. W.; Wang, Y.; Zheng, L. R.; Zhang, B.; Zhao, H. J.; Yang, H. G. Bimetallic carbide as a stable hydrogen evolution catalyst in harsh acidic water. ACS Energy Lett. 2018, 3, 78–84.

[18]

Ma, X. M.; Meng, H.; Cai, M.; Shen, P. K. Bimetallic carbide nanocomposite enhanced Pt catalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 1954–1957.

[19]

Smirnov, A. A.; Geng, Z.; Khromova, S. A.; Zavarukhin, S. G.; Bulavchenko, O. A.; Saraev, A. A.; Kaichev, V. V.; Ermakov, D. Y.; Yakovlev, V. A. Nickel molybdenum carbides: Synthesis, characterization, and catalytic activity in hydrodeoxygenation of anisole and ethyl caprate. J. Catal. 2017, 354, 61–77.

[20]

Zhao, L. H.; Fang, K. G.; Jiang, D.; Li, D. B.; Sun, Y. H. Sol-gel derived Ni-Mo bimetallic carbide catalysts and their performance for CO hydrogenation. Catal. Today 2010, 158, 490–495.

[21]

Sabyrov, K.; Jiang, J. C.; Yaghi, O. M.; Somorjai, G. A. Hydroisomerization of n-hexane using acidified metal-organic framework and platinum nanoparticles. J. Am. Chem. Soc. 2017, 139, 12382–12385.

[22]

Ishikawa, S.; Ikeda, T.; Koutani, M.; Yasumura, S.; Amakawa, K.; Shimoda, K.; Jing, Y.; Toyao, T.; Sadakane, M.; Shimizu, K. I. et al. Oxidation catalysis over solid-state keggin-type phosphomolybdic acid with oxygen defects. J. Am. Chem. Soc. 2022, 144, 7693–7708.

[23]

Su, S. D.; Li, X. M.; Liu, Z. Y.; Ding, W. M.; Cao, Y.; Yang, Y.; Su, Q.; Luo, M. Microchemical environmental regulation of POMs@MIL-101(Cr) promote photocatalytic nitrogen to ammonia. J. Colloid Interface Sci. 2023, 646, 547–554.

[24]

Santamaria, M.; Pecoraro, C. M.; Di Franco, F.; Di Quarto, F. Phosphomolybdic acid and mixed phosphotungstic/phosphomolybdic acid chitosan membranes as polymer electrolyte for H2/O2 fuel cells. Int. J. Hydrogen Energy 2017, 42, 6211–6219.

[25]

He, C. Y.; Tao, J. Z. Three-dimensional hollow porous Co6Mo6C nanoframe as an highly active and durable electrocatalyst for water splitting. J. Catal. 2017, 347, 63–71.

[26]

He, C. Y.; Zhang, S. K.; Tao, J. Z.; Qiu, Y. F. Ultrafine Co6Mo6C nanocrystals on reduced graphene oxide as efficient and highly stable electrocatalyst for hydrogen generation. Int. J. Hydrogen Energy 2018, 43, 20323–20331.

[27]

Chen, C. F.; Wu, A. P.; Yan, H. J.; Xiao, Y. L.; Tian, C. G.; Fu, H. G. Trapping [PMo12O40]3− clusters into pre-synthesized ZIF-67 toward Mo x Co x C particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem. Sci. 2018, 9, 4746–4755.

[28]

Li, F. P.; Li, J. Q.; Wang, K.; Ao, M.; Qiu, J. S.; Zhang, X. W.; Wang, H.; Pham, G. H.; Liu, S. M. Co/Co6Mo6C@C nanoreactors derived from ZIF-67 composite for higher alcohols synthesis. Compos. Part. B: Eng. 2021, 209, 108608.

[29]

Shi, C.; Zhang, A. J.; Li, X. S.; Zhang, S. H.; Zhu, A. M.; Ma, Y. F.; Au, C. Ni-modified Mo2C catalysts for methane dry reforming. Appl. Catal. A: Gen. 2012, 431–432, 164–170

[30]

Jia, Y.; Ji, Y. G.; Xue, Q.; Li, F. M.; Zhao, G. T.; Jin, P. J.; Li, S. N.; Chen, Y. Efficient nitrate-to-ammonia electroreduction at cobalt phosphide nanoshuttles. ACS Appl. Mater. Interfaces 2021, 13, 45521–45527.

[31]
Qi, R. K.; Wang, Z. W.; Zhong, M. X.; Wang, C.; Bai, F. Q.; Lu, X. F. Synergistic integration of amorphous cobalt phosphide with a conductive channel for highly efficient electrocatalytic nitrate reduction to ammonia. Small, in press, https://doi.org/10.1002/smll.202308311.
[32]

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

[33]

Ren, Z. F.; Chen, Q. Y.; Zhang, J.; An, X. G.; Liu, Q.; Xie, L. S.; Yao, W. T.; Sun, X. P.; Kong, Q. Q. Electrodeposited Ni-Mo-P nanoparticles on TiO2 nanoribbon array for electrocatalytic ammonia synthesis by reducing nitrite. Mater. Today Phys. 2023, 36, 101162.

[34]

Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.

[35]

Fan, Y. Q.; Wang, L. M.; Huang, W. W.; Dong, Y.; Ma, Z. P.; Guo, W. F.; Mai, L. Q. Co(OH)2@Co electrode for efficient alkaline anode based on Co2+/Co0 redox mechanism. Energy Stor. Mater. 2019, 21, 372–377.

[36]

Bau, J. A.; Haspel, H.; Ould-Chikh, S.; Aguilar-Tapia, A.; Hazemann, J. L.; Idriss, H.; Takanabe, K. On the reconstruction of NiMo electrocatalysts by operando spectroscopy. J. Mater. Chem. A 2019, 7, 15031–15035.

[37]

Bau, J. A.; Kozlov, S. M.; Azofra, L. M.; Ould-Chikh, S.; Emwas, A. H.; Idriss, H.; Cavallo, L.; Takanabe, K. Role of oxidized Mo species on the active surface of Ni-Mo electrocatalysts for hydrogen evolution under alkaline conditions. ACS Catal. 2020, 10, 12858–12866.

[38]

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

[39]

Han, S. H.; Li, H. J.; Li, T. L.; Chen, F. P.; Yang, R.; Yu, Y. F.; Zhang, B. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 2023, 6, 402–414.

[40]

Zhou, N.; Wang, Z.; Zhang, N.; Bao, D.; Zhong, H. X.; Zhang, X. B. Potential-induced synthesis and structural identification of oxide-derived Cu electrocatalysts for selective nitrate reduction to ammonia. ACS Catal. 2023, 13, 7529–7537.

[41]
Weng, S. F.; Xu, Y. Z. Fourier Transform Infrared Spectroscopy, 3rd ed.; CIP: Beijing, 2016.
[42]

Zhang, N.; Shang, J.; Deng, X.; Cai, L. J.; Long, R.; Xiong, Y. J.; Chai, Y. Governing interlayer strain in bismuth nanocrystals for efficient ammonia electrosynthesis from nitrate reduction. ACS Nano 2022, 16, 4795–4804.

[43]

Zheng, Y. N.; Qin, M. X.; Yu, X.; Yao, H.; Zhang, W. H.; Xie, G.; Guo, X. H. Constructing Ru@C3N4/Cu tandem electrocatalyst with dual-active sites for enhanced nitrate electroreduction to ammonia. Small 2023, 19, 2302266.

[44]

Zhang, Y. Z.; Zheng, H.; Zhou, K. J.; Ye, J. Y.; Chu, K. B.; Zhou, Z. Y.; Zhang, L. S.; Liu, T. X. Conjugated coordination polymer as a new platform for efficient and selective electroreduction of nitrate into ammonia. Adv. Mater. 2023, 35, 2209855.

[45]

Dain, R. P.; Gresham, G.; Groenewold, G. S.; Steill, J. D.; Oomens, J.; Van Stipdonk, M. J. Infrared multiple photon dissociation spectroscopy of group I and group II metal complexes with Boc-hydroxylamine. Rapid Commun. Mass Spectrom. 2013, 27, 1867–1872.

[46]

Bu, Y. G.; Wang, C.; Zhang, W. K.; Yang, X. H.; Ding, J.; Gao, G. D. Electrical pulse-driven periodic self-repair of Cu-Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew. Chem., Int. Ed. 2023, 62, e202217337.

[47]

Zhao, F. L.; Hai, G. T.; Li, X.; Jiang, Z. Y.; Wang, H. H. Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation. Chem. Eng. J. 2023, 461, 141960.

[48]

Liu, G. J.; Bai, H. P.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Lin, H. P.; Zheng, L. R.; Li, Y. Y.; Zhang, B.; Peng, H. S. A highly efficient alkaline HER Co-Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state. J. Mater. Chem. A 2019, 7, 12434–12439.

[49]

He, C. Y.; Tao, J. Z. 2D Co6Mo6C nanosheets as robust hydrogen evolution reaction electrocatalyst. Adv. Sustain. Syst. 2018, 2, 1700136.

Nano Research
Pages 5807-5816
Cite this article:
Wang X, Cao Y, Hai Y, et al. Synergistic effect of Co and Co6Mo6C for electroreduction of nitrate to ammonia on Co-MOF derived Co6Mo6C/Co/NC. Nano Research, 2024, 17(7): 5807-5816. https://doi.org/10.1007/s12274-024-6535-3
Topics:
Metrics & Citations  
Article History
Copyright
Return