Journal Home > Online First

Electrocatalytic CO2 reduction reaction (CO2RR) in acidic media is a promising approach to overcome the unavoidable formation of carbonates in alkaline or neutral electrolytes. However, the proton-rich environment near the catalyst surface favors hydrogen evolution reactions (HER), leading to lower energy efficiency of the desired products, especially in industrial-level current densities. Here, quaternary ammonium cationic surfactant (cetyltrimethylammonium bromide (CTAB)) was introduced into acidic electrolyte to modulate the interfacial microenvironment, which greatly enhanced CO2 electroreduction to formic acid (HCOOH) at the Bi/C nanoparticles electrode. Using a Bi/C nanoparticles electrode with CTAB added, constant production of formic acid was enabled with a cathodic energy efficiency of > 40% and maximum FEHCOOH (FE = Faradaic efficiency) of 86.2% at −400 mA·cm−2 over 24 h. Combined with in-situ attenuated total reflection Fourier transform infrared spectroscopy, the concentration of *OCHO intermediates significantly increased after CTAB modification, confirming that the hydrophobic interface microenvironment formed by dynamic adsorption of positively charged long alkyl chains on Bi/C nanoparticle electrodes inhibited HER and improved the selectivity of CO2RR to HCOOH.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Acidic electroreduction CO2 to formic acid via interfacial modification of Bi nanoparticles at industrial-level current

Show Author's information Tian Dong1Hongdong Li1( )Zhenhui Wang1Yanling Geng1Rui Chang1Xiaofeng Tian1Jianping Lai1Shouhua Feng1Lei Wang1,2( )
Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Abstract

Electrocatalytic CO2 reduction reaction (CO2RR) in acidic media is a promising approach to overcome the unavoidable formation of carbonates in alkaline or neutral electrolytes. However, the proton-rich environment near the catalyst surface favors hydrogen evolution reactions (HER), leading to lower energy efficiency of the desired products, especially in industrial-level current densities. Here, quaternary ammonium cationic surfactant (cetyltrimethylammonium bromide (CTAB)) was introduced into acidic electrolyte to modulate the interfacial microenvironment, which greatly enhanced CO2 electroreduction to formic acid (HCOOH) at the Bi/C nanoparticles electrode. Using a Bi/C nanoparticles electrode with CTAB added, constant production of formic acid was enabled with a cathodic energy efficiency of > 40% and maximum FEHCOOH (FE = Faradaic efficiency) of 86.2% at −400 mA·cm−2 over 24 h. Combined with in-situ attenuated total reflection Fourier transform infrared spectroscopy, the concentration of *OCHO intermediates significantly increased after CTAB modification, confirming that the hydrophobic interface microenvironment formed by dynamic adsorption of positively charged long alkyl chains on Bi/C nanoparticle electrodes inhibited HER and improved the selectivity of CO2RR to HCOOH.

Keywords: electrolyte additive, acidic media, CO2 electrolysis, hydrophobic interfacial microenvironment, industrial-level current

References(53)

[1]

Wang, H. L.; Jiao, Y. F.; Wu, B.; Wang, D.; Hu, Y. Q.; Liang, F.; Shen, C.; Knauer, A.; Ren, D.; Wang, H. G. et al. Exfoliated 2D layered and nonlayered metal phosphorous trichalcogenides nanosheets as promising electrocatalysts for CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202217253.

[2]

Zhai, J. R.; Hu, Y.; Su, M. F.; Shi, J. W.; Li, H.; Qin, Y. Z.; Gao, F.; Lu, Q. Y. One-step phase separation for core-shell carbon@indium oxide@bismuth microspheres with enhanced activity for CO2 electroreduction to formate. Small 2023, 19, 2206440.

[3]

Takaoka, Y.; Song, J. T.; Takagaki, A.; Watanabe, M.; Ishihara, T. Bi/UiO-66-derived electrocatalysts for high CO2-to-formate conversion rate. Appl. Catal. B: Environ. 2023, 326, 122400.

[4]

Shi, Y. J.; Wang, Y. J.; Yu, J. Y.; Chen, Y. K.; Fang, C. Q.; Jiang, D.; Zhang, Q. H.; Gu, L.; Yu, X. W.; Li, X. et al. Superscalar phase boundaries derived multiple active sites in SnO2/Cu6Sn5/CuO for tandem electroreduction of CO2 to formic acid. Adv. Energy Mater. 2023, 13, 2203506.

[5]

Liu, H. Z.; Chen, Y. F.; Lee, J.; Gu, S.; Li, W. Z. Ammonia-mediated CO2 capture and direct electroreduction to formate. ACS Energy Lett. 2022, 7, 4483–4489.

[6]

Sheng, Y. W.; Guo, Y. Y.; Yu, H. J.; Deng, K.; Wang, Z. Q.; Li, X. N.; Wang, H. J.; Wang, L.; Xu, Y. Engineering under-coordinated active sites with tailored chemical microenvironments over mosaic bismuth nanosheets for selective CO2 electroreduction to formate. Small 2023, 19, 2207305.

[7]

Ma, X. T.; Zhang, Y. G.; Fan, T. T.; Wei, D. Y.; Huang, Z. Y.; Zhang, Z. H.; Zhang, Z.; Dong, Y. Y.; Hong, Q. M.; Chen, Z. et al. Facet dopant regulation of Cu2O boosts electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 2023, 33, 2213145.

[8]

Ma, J. J.; Yan, J.; Xu, J. J.; Ni, J. Q.; Zhang, H. J.; Lu, L. L. Dynamic ion exchange engineering BiOI-derived Bi2O2CO3 to promote CO2 electroreduction for efficient formate production. Chem. Eng. J. 2023, 455, 140926.

[9]

Liu, H.; Su, Y. Q.; Liu, Z. H.; Chuai, H.; Zhang, S.; Ma, X. B. Tailoring microenvironment for enhanced electrochemical CO2 reduction on ultrathin tin oxide derived nanosheets. Nano Energy 2023, 105, 108031.

[10]

Lin, C.; Liu, Y.; Kong, X. D.; Geng, Z. G.; Zeng, J. Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate. Nano Res. 2022, 15, 10078–10083.

[11]

Wang, H. M.; Fu, Y. Q.; Chen, Z. N.; Zhuang, W.; Cao, M. N.; Cao, R. Tunable CO2 enrichment on functionalized Au surface for enhanced CO2 electroreduction. Nano Res. 2023, 16, 4723–4728.

[12]

Ni, J. J.; Cheng, Q. Y.; Liu, S. S.; Wang, M. F.; He, Y. Z.; Qian, T.; Yan, C. L.; Lu, J. M. Deciphering electrolyte selection for electrochemical reduction of carbon dioxide and nitrogen to high-value-added chemicals. Adv. Funct. Mater. 2023, 33, 2212483.

[13]

Deng, B. W.; Huang, M.; Zhao, X. L.; Mou, S. Y.; Dong, F. Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal. 2022, 12, 331–362.

[14]

Zhao, Y.; Hao, L.; Ozden, A.; Liu, S. J.; Miao, R. K.; Ou, P. F.; Alkayyali, T.; Zhang, S. Z.; Ning, J.; Liang, Y. X. et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth. 2023, 2, 403–412.

[15]

Wang, J. L.; Huang, Y. C.; Wang, Y. Q.; Deng, H.; Shi, Y. C.; Wei, D. X.; Li, M. T.; Dong, C. L.; Jin, H.; Mao, S. S. et al. Atomically dispersed metal-nitrogen-carbon catalysts with d-orbital electronic configuration-dependent selectivity for electrochemical CO2-to-CO reduction. ACS Catal. 2023, 13, 2374–2385.

[16]

Han, Z. S.; Han, D. L.; Chen, Z.; Gao, J. C.; Jiang, G. Y.; Wang, X. Y.; Lyu, S.; Guo, Y.; Geng, C. N.; Yin, L. C. et al. Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nat. Commun. 2022, 13, 3158.

[17]

Zhang, L. B.; Feng, J. Q.; Liu, S. J.; Tan, X. X.; Wu, L. M.; Jia, S. H.; Xu, L.; Ma, X. D.; Song, X. N.; Ma, J. et al. Atomically dispersed Ni-Cu catalysts for pH-universal CO2 electroreduction. Adv. Mater. 2023, 35, 2209590.

[18]

Nie, W. X.; Heim, G. P.; Watkins, N. B.; Agapie, T.; Peters, J. C. Organic additive-derived films on Cu electrodes promote electrochemical CO2 reduction to C2+ products under strongly acidic conditions. Angew. Chem., Int. Ed. 2023, 62, e202216102.

[19]

Zhang, J.; Pan, B. B.; Li, Y. G. Modulating electrochemical CO2 reduction at interfaces. Sci. Bull. 2022, 67, 1844–1848.

[20]

Li, H. F.; Li, H. B.; Wei, P. F.; Wang, Y.; Zang, Y. P.; Gao, D. F.; Wang, G. X.; Bao, X. H. Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over Ni-N-C catalyst in a membrane electrode assembly electrolyzer. Energy Environ. Sci. 2023, 16, 1502–1510.

[21]

Xu, Z. Y.; Sun, M. Z.; Zhang, Z. S.; Xie, Y.; Hou, H. S.; Ji, X. B.; Liu, T. F.; Huang, B. L.; Wang, Y. Steering the selectivity of electrochemical CO2 reduction in acidic media. ChemCatChem 2022, 14, e202200052.

[22]

Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570.

[23]

Sheng, X. D.; Ge, W. X.; Jiang, H. L.; Li, C. Z. Engineering Ni-N-C catalyst microenvironment enabling CO2 electroreduction with nearly 100% CO selectivity in acid. Adv. Mater. 2022, 34, 2201295.

[24]

Liu, Z. K.; Yan, T.; Shi, H.; Pan, H.; Cheng, Y. Y.; Kang, P. Acidic electrocatalytic CO2 reduction using space-confined nanoreactors. ACS Appl. Mater. Interfaces 2022, 14, 7900–7908.

[25]

Capdevila-Cortada, M. Acid solution. Nat. Catal. 2022, 5, 1073–1073.

[26]

Jiang, Z.; Zhang, Z. S.; Li, H.; Tang, Y. R.; Yuan, Y. B.; Zao, J.; Zheng, H. Z.; Liang, Y. Y. Molecular catalyst with near 100% selectivity for CO2 reduction in acidic electrolytes. Adv. Energy Mater. 2023, 13, 2203603.

[27]

Fan, J.; Pan, B. B.; Wu, J. L.; Shao, C. C.; Wen, Z. Y.; Yan, Y. C.; Wang, Y. H.; Li, Y. G. Immobilized tetraalkylammonium cations enable metal-free CO2 electroreduction in acid and pure water. Angew. Chem., Int. Ed. 2024, 63, e202317828.

[28]

Sheng, B. B.; Cao, D. F.; Shou, H. W.; Xu, W. J.; Wu, C. Q.; Zhang, P. J.; Liu, C. J.; Xia, Y. J.; Wu, X. J.; Chu, S. Q. et al. Anomalous Ru dissolution enabling efficient integrated CO2 electroreduction in strong acid. Chem. Eng. J. 2023, 454, 140245.

[29]

Qiao, Y.; Lai, W. C.; Huang, K.; Yu, T. T.; Wang, Q. Y.; Gao, L.; Yang, Z. L.; Ma, Z. S.; Sun, T. L.; Liu, M. et al. Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid. ACS Catal. 2022, 12, 2357–2364.

[30]

Pan, B. B.; Wang, Y. H.; Li, Y. G. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catal. 2022, 2, 1267–1276.

[31]

Bondue, C. J.; Graf, M.; Goyal, A.; Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 2021, 143, 279–285.

[32]

Qin, H. G.; Li, F. Z.; Du, Y. F.; Yang, L. F.; Wang, H.; Bai, Y. Y.; Lin, M.; Gu, J. Quantitative understanding of cation effects on the electrochemical reduction of CO2 and H+ in acidic solution. ACS Catal. 2023, 13, 916–926.

[33]

Siritanaratkul, B.; Forster, M.; Greenwell, F.; Sharma, P. K.; Yu, E. H.; Cowan, A. J. Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts. J. Am. Chem. Soc. 2022, 144, 7551–7556.

[34]

Li, L.; Liu, Z. Y.; Yu, X. H.; Zhong, M. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem., Int. Ed. 2023, 62, e202300226.

[35]

Li, Z. Q.; Sun, B.; Xiao, D. F.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Wang, P.; Dai, Y.; Cheng, H. F.; Huang, B. B. Electron-rich Bi nanosheets promotes CO2· formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202217569.

[36]
Huang, J. E.; Li, F. W.; Ozden, A.; Rasouli, A. S.; De Arquer, F. P. G.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021 , 372, 1074–1078.
DOI
[37]

Ruan, S. H.; Zhang, B.; Zou, J. H.; Zhong, W. F.; He, X. Y.; Lu, J. H.; Zhang, Q. H.; Wang, Y.; Xie, S. J. Bismuth nanosheets with rich grain boundaries for efficient electroreduction of CO2 to formate under high pressures. Chin. J. Catal. 2022, 43, 3161–3169.

[38]

Yan, T.; Pan, H.; Liu, Z. K.; Kang, P. Phase-inversion induced 3D electrode for direct acidic electroreduction CO2 to formic acid. Small 2023, 19, 2207650.

[39]

Qin, H. G.; Du, Y. F.; Bai, Y. Y.; Li, F. Z.; Yue, X.; Wang, H.; Peng, J. Z.; Gu, J. Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte. Nat. Commun. 2023, 14, 5640.

[40]

Lin, L.; He, X. Y.; Zhang, X. G.; Ma, W. C.; Zhang, B.; Wei, D. Y.; Xie, S. J.; Zhang, Q. H.; Yi, X. D.; Wang, Y. A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate. Angew. Chem., Int. Ed. 2023, 62, e202214959.

[41]

Yang, J.; Wang, X. L.; Qu, Y. T.; Wang, X.; Huo, H.; Fan, Q. K.; Wang, J.; Yang, L. M.; Wu, Y. E. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 2020, 10, 2001709.

[42]

Hao, L.; Kang, L.; Huang, H. W.; Ye, L. Q.; Han, K. L.; Yang, S. Q.; Yu, H. J.; Batmunkh, M.; Zhang, Y. H.; Ma, T. Y. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 2019, 31, 1900546.

[43]

Deng, P. L.; Yang, F.; Wang, Z. T.; Chen, S. H.; Zhou, Y. Z.; Zaman, S.; Xia, B. Y. Metal-organic frameworks-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2020, 59, 10807–10813.

[44]

He, S. S.; Ni, F. L.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Bai, H. P.; Liu, G. J.; Zhang, Y.; Li, Y. Y.; Zhang, B. et al. The p-orbital delocalization of main-group metal boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2018, 57, 16114–16119.

[45]

Sun, Z. H.; Liu, Y.; Ye, W. B.; Zhang, J. Y.; Wang, Y. Y.; Lin, Y.; Hou, L. R.; Wang, M. S.; Yuan, C. Z. Unveiling intrinsic potassium storage behaviors of hierarchical nano Bi@N-doped carbon nanocages framework via in situ characterizations. Angew. Chem., Int. Ed. 2021, 60, 7180–7187.

[46]

Wu, D.; Wang, X. W.; Fu, X. Z.; Luo, J. L. Ultrasmall Bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction. Appl. Catal. B: Environ. 2021, 284, 119723.

[47]

Shan, L. W.; Bi, J. J.; Liu, Y. T. Roles of BiOCl(001) in face-to-faced BiOI(010)/BiOCl(001) heterojunction. J. Nanopart. Res. 2018, 20, 170.

[48]

Ge, W. X.; Chen, Y. X.; Fan, Y.; Zhu, Y. H.; Liu, H. L.; Song, L.; Liu, Z.; Lian, C.; Jiang, H. L.; Li, C. Z. Dynamically formed surfactant assembly at the electrified electrode-electrolyte interface boosting CO2 electroreduction. J. Am. Chem. Soc. 2022, 144, 6613–6622.

[49]

Shen, H. F.; Jin, H. Y.; Li, H. B.; Wang, H. R.; Duan, J. J.; Jiao, Y.; Qiao, S. Z. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat. Commun. 2023, 14, 2843.

[50]

Zheng, M.; Wang, P. T.; Zhi, X.; Yang, K.; Jiao, Y.; Duan, J. J.; Zheng, Y.; Qiao, S. Z. Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage. J. Am. Chem. Soc. 2022, 144, 14936–14944.

[51]

Wang, P. T.; Yang, H.; Tang, C.; Wu, Y.; Zheng, Y.; Cheng, T.; Davey, K.; Huang, X. Q.; Qiao, S. Z. Boosting electrocatalytic CO2-to-ethanol production via asymmetric C–C coupling. Nat. Commun. 2022, 13, 3754.

[52]

Shen, H. D.; Wang, T. S.; Jiang, H.; Zhao, P.; Chen, Z. W.; Feng, Y. Z.; Cao, Y. L.; Guo, Y.; Zhang, Q. Y.; Zhang, H. P. Theoretical calculation guided design of single atom-alloyed bismuth catalysts for ampere-level CO2 electrolysis to formate. Appl. Catal. B Environ. 2023, 339, 123140.

[53]

Pan, B. B.; Fan, J.; Zhang, J.; Luo, Y. Q.; Shen, C.; Wang, C. Q.; Wang, Y. H.; Li, Y. G. Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly. ACS Energy Lett. 2022, 7, 4224–4231.

File
6536_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 December 2023
Revised: 29 January 2024
Accepted: 30 January 2024
Published: 23 March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52072197, 22302108, 21971132, and 52272222), Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (No. 2023KJ313), Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), Major Scientific and Technological Innovation Project (No. 2019JZZY020405), Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09), Natural Science Foundation of Qingdao (No. 23-2-1-12-zyyd-jch), and Qingdao Postdoctoral Researcher Applied Research Project (No. QDBSH20220202043).

Return