AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly adaptive triboelectric tactile sensor on the foot of autonomous wall-climbing robots for detecting the adhesion state and avoiding the hazard

Zhaoyang Wang1,§Jianhua Liu1,§Ziyu Wang1,§Chang Liu1Qingyu Chen2Chaofan Zhang2Wenbo Zhang3Jicang Si1Xiu Xiao1( )Peng Xu1,4( )Minyi Xu1( )
Dalian Key Lab of Marine Micro/Nano Energy and Self-powered System, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
Information Science and Technology College, Dalian Maritime University, Dalian 116026, China
Navigation College, Dalian Maritime University, Dalian 116026, China
Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing 100871, China

§ Zhaoyang Wang, Jianhua Liu, and Ziyu Wang contributed equally to this work.

Show Author Information

Graphical Abstract

The paper proposed a triboelectric tactile sensor (TTS) for an autonomous legged magnetic adsorption wall-climbing robot for ship inspection. The robot equipped with TTS realized the recognition of dangerous zones on the crawling wall and autonomous hazard avoidance.

Abstract

Due to the excellent maneuverability and obstacle crossing of legged robots, it is possible for an autonomous legged wall-climbing robots to replace manual inspection of ship exterior panels. However, when the magnetic adsorption legged wall-climbing robot steps on the convex point or convex line of the wall, or even when the robot missteps, the robot is likely to detach from the ferromagnetic wall. Therefore, this paper proposes a tactile sensor for the legged magnetic adsorption wall-climbing robot to detect the magnetic adsorption state and improve the safety of the autonomous crawling of the robot. The tactile sensor mainly comprises a three-dimensional (3D)-printed shell, a tactile slider, and three isometric sensing units, with an optimized geometry. The experiment shows that the triboelectric tactile sensor can monitor the sliding depth of the tactile slider and control the light-emitting device (LED) signal light. In addition, in the demonstration experiment of detecting the adsorption state of the robot's foot, the triboelectric tactile sensor has strong adaptability to various ferromagnetic wall surfaces. Finally, this study establishes a robot gait control system to verify the feedback control ability of the triboelectric tactile sensor. The results show that the robot equipped with the triboelectric tactile sensor can recognize the dangerous area on the crawling wall and autonomously avoid the risk. Therefore, the proposed triboelectric tactile sensor has great potential in realizing the tactile sensing ability of robots and enhancing the safety and intelligent inspection of ultra-large vessels.

Electronic Supplementary Material

Video
6537_ESM2.mp4
6537_ESM3.mp4
6537_ESM4.mp4
Download File(s)
6537_ESM1.pdf (1.1 MB)

References

[1]
Vlasova, N. S.; Bykov, N. V. The problem of adhesion methods and locomotion mechanism development for wall-climbing robots. 2019, arXiv: 1905.09214. arXiv.org e-Print archive. https://arxiv.org/abs/1905.09214 (accessed May 22, 2019).
[2]
Hajeer, A.; Chen, L.; Hu, E. Review of classification for wall climbing robots for industrial inspection applications. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering, Hong Kong, China, 2020, pp 1421–1426.
[3]

Fang, Y.; Wang, S.; Bi, Q. S.; Cui, D.; Yan, C. L. Design and technical development of wall-climbing robots: A review. J. Bionic Eng. 2022, 19, 877–901.

[4]

Huang, H. C.; Li, D. H.; Xue, Z.; Chen, X. L.; Liu, S. Y.; Leng, J. X.; Wei, Y. Design and performance analysis of a tracked wall-climbing robot for ship inspection in shipbuilding. Ocean Eng. 2017, 131, 224–230.

[5]

Wang, B.; Ni, Z. F.; Shen, Y.; Zhang, S.; Shen, Q.; Niu, X. W. Design and analysis of a wheel-leg compound variable curvature ship hull cleaning robot. Ocean Eng. 2022, 266, 112755.

[6]
Silva, M. F.; Machado, J. A. T.; Tar, J. K. A survey of technologies for climbing robots adhesion to surfaces. In Proceedings of 2008 IEEE International Conference on Computational Cybernetics, Stara Lesna, Slovakia, 2008, pp 127–132.
[7]
Kapula, P. R.; Ram, M. B.; Chakradhar, M. S.; Shravani, K.; Akhilesh, K.; Likhitha, K. L. Design of an adhesion-based wall climbing robot. In Proceedings of the 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies, Vellore, India, 2023, pp 1–6.
[8]

Hu, J. Y.; Han, X.; Tao, Y. R.; Feng, S. Z. A magnetic crawler wall-climbing robot with capacity of high payload on the convex surface. Robot. Auton. Syst. 2022, 148, 103907.

[9]

Zhu, L. S.; Zheng, X. S. Design of a curved surface adaptive permanent magnet wall climbing robot. J. Phys. Conf. Ser. 2022, 2405, 012028.

[10]

Hong, S.; Um, Y.; Park, J.; Park, H. W. Agile and versatile climbing on ferromagnetic surfaces with a quadrupedal robot. Sci. Robot. 2022, 7, eadd1017.

[11]

Zhu, H. F.; Guan, Y. S.; Wu, W. Q.; Zhang, L. M.; Zhou, X. F.; Zhang, H. Autonomous pose detection and alignment of suction modules of a biped wall-climbing robot. IEEE/ASME Trans. Mechatron. 2015, 20, 653–662.

[12]

Kim, T.; Hong, I.; Kim, M.; Im, S.; Roh, Y.; Kim, C.; Lim, J.; Kim, D.; Park, J.; Lee, S. et al. Ultra-stable and tough bioinspired crack-based tactile sensor for small legged robots. npj Flex. Electron. 2023, 7, 22.

[13]
Zainal Abidin, M. S.; Amin, S. H. M. On the development a pneumatic four-legged mechanism autonomous vertical wall climbing robot. In Proceedings of 1998 Malaysian Science and Techology Congress, Pulan Pinang, Malaysia, 1999.
[14]

Li, R.; Yan, S.; Zhou, C. C.; Liu, Z. B.; Shou, M. J. Design of the paw of wall-climbing robot with spiny and sensing function. J. Phys. Conf. Ser. 2023, 2537, 12009.

[15]

Aslam, D. M.; Dangi, G. D. Design, fabrication and testing of a smart robotic foot. Robot. Auton. Syst. 2005, 51, 207–214.

[16]

Zhang, H. X.; Zhang, J. W.; Zong, G. H.; Wang, W.; Liu, R. Sky cleaner 3: A real pneumatic climbing robot for glass-wall cleaning. IEEE Robot. Autom. Mag. 2006, 13, 32–41.

[17]

Hu, B. S.; Xue, J. T.; Jiang, D. J.; Tan, P. C.; Wang, Y. Q.; Liu, M. H.; Yu, H. L.; Zou, Y.; Li, Z. Wearable exoskeleton system for energy harvesting and angle sensing based on a piezoelectric cantilever generator array. ACS Appl. Mater. Interfaces 2022, 14, 36622–36632.

[18]

Zou, Y.; Gai, Y. S.; Tan, P. C.; Jiang, D. J.; Qu, X. C.; Xue, J. T.; Ouyang, H.; Shi, B. J.; Li, L. L.; Luo, D. et al. Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam. Res. 2022, 18, 619–628.

[19]

Liu, J. H.; Xu, P.; Zheng, J. X.; Liu, X. Y.; Wang, X. Y.; Wang, S. Y.; Guan, T. Z.; Xie, G. M.; Xu, M. Y. Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance. Nano Energy 2022, 101, 107633.

[20]

Xu, P.; Liu, J. H.; Liu, X. Y.; Wang, X. Y.; Zheng, J. X.; Wang, S. Y.; Chen, T. Y.; Wang, H.; Wang, C.; Fu, X. P. et al. A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception. npj Flex. Electron. 2022, 6, 25.

[21]

Xu, P.; Wang, X. Y.; Wang, S. Y.; Chen, T. Y.; Liu, J. H.; Zheng, J. X.; Li, W. X.; Xu, M. Y.; Tao, J.; Xie, G. M. A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping. Research 2021, 2021, 9864967.

[22]

Song, Z. W.; Yin, J. H.; Wang, Z. H.; Lu, C. Y.; Yang, Z.; Zhao, Z. H.; Lin, Z. N.; Wang, J. Y.; Wu, C. S.; Cheng, J. et al. A flexible triboelectric tactile sensor for simultaneous material and texture recognition. Nano Energy 2022, 93, 106798

[23]

Jose, J.; Dinakaran, D.; Ramya, M. M.; Harris Samuel, D. G. A survey on magnetic wall-climbing robots for inspection. Int. J. Mech. Prod. Eng. Res. Dev. 2018, 8, 59–68.

[24]
Wang, S. Y. Research status and future development of wall-climbing robot. In Proceedings of 2021 International Conference on Electronics, Circuits and Information Engineering, Zhengzhou, China, 2021, pp 122–130.
[25]

Chen, X. L.; Wu, Y. P.; Hao, H. D.; Shi, H. L.; Huang, H. C. Tracked wall-climbing robot for calibration of large vertical metal tanks. Appl. Sci. 2019, 9, 2671.

[26]

Xu, Z. L.; Ma, P. S. A wall-climbing robot for labelling scale of oil tank’s volume. Robotica 2002, 20, 209–212.

[27]

Meng, H. Y.; Yu, Q.; Liu, Z.; Gai, Y. S.; Xue, J. T.; Bai, Y.; Qu, X. C.; Tan, P. C.; Luo, D.; Huang, W. W. et al. Triboelectric performances of biodegradable polymers. Matter 2023, 6, 4274–4290.

[28]

Li, Y. H.; Yu, J. R.; Wei, Y. C.; Wang, Y. F.; Feng, Z. Y.; Cheng, L. Q.; Huo, Z. W.; Lei, Y. Q.; Sun, Q. J. Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 2023, 23, 1329.

[29]

Liu, J. R.; Huang, H.; Zhou, Q.; Wu, C. Self-powered downhole drilling tools vibration sensor based on triboelectric nanogenerator. IEEE Sens. J. 2022, 22, 2250–2258.

[30]

Zhu, J.; Hou, X. J.; Niu, X. S.; Guo, X. P.; Zhang, J.; He, J.; Guo, T.; Chou, X. J.; Xue, C. Y.; Zhang, W. D. The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor. Sens. Actuators A Phys. 2017, 263, 317–325.

[31]

Zhao, H. F.; Shu, M. R.; Ai, Z. H.; Lou, Z. R.; Sou, K. W.; Lu, C. Y.; Jin, Y. C.; Wang, Z. H.; Wang, J. Y.; Wu, C. S. et al. A highly sensitive triboelectric vibration sensor for machinery condition monitoring. Adv. Energy Mater. 2022, 12, 2201132.

[32]

Li, P.; Liu, Y. B.; Zhang, H.; Hu, Z. P.; Jia, L. N.; Liu, D. K.; Yu, L.; Li, B.; Yao, Y. W. All-nanofiber self-powered PTFE/PA66 device for real-time breathing monitor by scalable solution blow spinning technology. Nano Res. 2022, 15, 8458–8464.

[33]

Xu, J. H.; Wei, X. L.; Li, R. N.; Shi, Y. P.; Peng, Y. T.; Wu, Z. Y.; Wang, Z. L. Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping. Nano Res. 2022, 15, 6483–6489.

[34]

Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789–1795.

[35]

Tan, P. C.; Han, X.; Zou, Y.; Qu, X. C.; Xue, J. T.; Li, T.; Wang, Y. Q.; Luo, R. Z.; Cui, X.; Xi, Y. et al. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Adv. Mater. 2022, 34, 2200793.

[36]

Yang, Q. Y.; Yang, S. Q.; Qiu, P. F.; Peng, L. M.; Wei, T. R.; Zhang, Z.; Shi, X.; Chen, L. D. Flexible thermoelectrics based on ductile semiconductors. Science 2022, 377, 854–858.

[37]
Liu, J. H.; Xu, P.; Liu, B.; Xi, Z. Y.; Li, Y. Z.; Guo, L. N.; Guan, T. Z.; Zhu, P.; Meng, Z. C.; Wang, S. Y. et al. Underwater biomimetic lateral line sensor based on triboelectric nanogenerator for dynamic pressure monitoring and trajectory perception. Small, in press, DOI: 10.1002/smll.202308491.
[38]

Wang, Y.; Wu, C.; Yang, S. A self-powered rotating speed sensor for downhole motor based on triboelectric nanogenerator. IEEE Sens. J. 2021, 21, 4310–4316.

[39]

Zhang, X. S.; Gao, Q.; Gao, Q.; Yu, X.; Cheng, T. H.; Wang, Z. L. Triboelectric rotary motion sensor for industrial-grade speed and angle monitoring. Sensors 2021, 21, 1713.

[40]

Qin, Y. H.; Fu, X. P.; Lin, Y.; Wang, Z.; Cao, J.; Zhang, C. Self-powered internet of things sensing node based on triboelectric nanogenerator for sustainable environmental monitoring. Nano Res. 2023, 16, 11878–11884.

[41]

Zhang, B. S.; Li, W. B.; Ge, J. W.; Chen, C. G.; Yu, X.; Wang, Z. L.; Cheng, T. H. Single-material-substrated triboelectric-electromagnetic hybrid generator for self-powered multifunctional sensing in intelligent greenhouse. Nano Res. 2023, 16, 3149–3155.

[42]

Cheng, T. H.; Shao, J. J.; Wang, Z. L. Triboelectric nanogenerators. Nat. Rev. Methods Primers 2023, 3, 39.

[43]

Zhou, Y. K.; Shen, M. L.; Cui, X.; Shao, Y. C.; Li, L. J.; Zhang, Y. Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 2021, 84, 105887.

[44]

Kim, W. G.; Kim, D. W.; Tcho, I. W.; Kim, J. K.; Kim, M. S.; Choi, Y. K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287.

[45]

Gao, Q.; Cheng, T. H.; Wang, Z. L. Triboelectric mechanical sensors—Progress and prospects. Extreme Mech. Lett. 2021, 42, 101100.

Nano Research
Pages 6518-6526
Cite this article:
Wang Z, Liu J, Wang Z, et al. Highly adaptive triboelectric tactile sensor on the foot of autonomous wall-climbing robots for detecting the adhesion state and avoiding the hazard. Nano Research, 2024, 17(7): 6518-6526. https://doi.org/10.1007/s12274-024-6537-1
Topics:

752

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 13 December 2023
Revised: 26 January 2024
Accepted: 02 February 2024
Published: 13 March 2024
© Tsinghua University Press 2024
Return