Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Due to the excellent maneuverability and obstacle crossing of legged robots, it is possible for an autonomous legged wall-climbing robots to replace manual inspection of ship exterior panels. However, when the magnetic adsorption legged wall-climbing robot steps on the convex point or convex line of the wall, or even when the robot missteps, the robot is likely to detach from the ferromagnetic wall. Therefore, this paper proposes a tactile sensor for the legged magnetic adsorption wall-climbing robot to detect the magnetic adsorption state and improve the safety of the autonomous crawling of the robot. The tactile sensor mainly comprises a three-dimensional (3D)-printed shell, a tactile slider, and three isometric sensing units, with an optimized geometry. The experiment shows that the triboelectric tactile sensor can monitor the sliding depth of the tactile slider and control the light-emitting device (LED) signal light. In addition, in the demonstration experiment of detecting the adsorption state of the robot's foot, the triboelectric tactile sensor has strong adaptability to various ferromagnetic wall surfaces. Finally, this study establishes a robot gait control system to verify the feedback control ability of the triboelectric tactile sensor. The results show that the robot equipped with the triboelectric tactile sensor can recognize the dangerous area on the crawling wall and autonomously avoid the risk. Therefore, the proposed triboelectric tactile sensor has great potential in realizing the tactile sensing ability of robots and enhancing the safety and intelligent inspection of ultra-large vessels.
Fang, Y.; Wang, S.; Bi, Q. S.; Cui, D.; Yan, C. L. Design and technical development of wall-climbing robots: A review. J. Bionic Eng. 2022, 19, 877–901.
Huang, H. C.; Li, D. H.; Xue, Z.; Chen, X. L.; Liu, S. Y.; Leng, J. X.; Wei, Y. Design and performance analysis of a tracked wall-climbing robot for ship inspection in shipbuilding. Ocean Eng. 2017, 131, 224–230.
Wang, B.; Ni, Z. F.; Shen, Y.; Zhang, S.; Shen, Q.; Niu, X. W. Design and analysis of a wheel-leg compound variable curvature ship hull cleaning robot. Ocean Eng. 2022, 266, 112755.
Hu, J. Y.; Han, X.; Tao, Y. R.; Feng, S. Z. A magnetic crawler wall-climbing robot with capacity of high payload on the convex surface. Robot. Auton. Syst. 2022, 148, 103907.
Zhu, L. S.; Zheng, X. S. Design of a curved surface adaptive permanent magnet wall climbing robot. J. Phys. Conf. Ser. 2022, 2405, 012028.
Hong, S.; Um, Y.; Park, J.; Park, H. W. Agile and versatile climbing on ferromagnetic surfaces with a quadrupedal robot. Sci. Robot. 2022, 7, eadd1017.
Zhu, H. F.; Guan, Y. S.; Wu, W. Q.; Zhang, L. M.; Zhou, X. F.; Zhang, H. Autonomous pose detection and alignment of suction modules of a biped wall-climbing robot. IEEE/ASME Trans. Mechatron. 2015, 20, 653–662.
Kim, T.; Hong, I.; Kim, M.; Im, S.; Roh, Y.; Kim, C.; Lim, J.; Kim, D.; Park, J.; Lee, S. et al. Ultra-stable and tough bioinspired crack-based tactile sensor for small legged robots. npj Flex. Electron. 2023, 7, 22.
Li, R.; Yan, S.; Zhou, C. C.; Liu, Z. B.; Shou, M. J. Design of the paw of wall-climbing robot with spiny and sensing function. J. Phys. Conf. Ser. 2023, 2537, 12009.
Aslam, D. M.; Dangi, G. D. Design, fabrication and testing of a smart robotic foot. Robot. Auton. Syst. 2005, 51, 207–214.
Zhang, H. X.; Zhang, J. W.; Zong, G. H.; Wang, W.; Liu, R. Sky cleaner 3: A real pneumatic climbing robot for glass-wall cleaning. IEEE Robot. Autom. Mag. 2006, 13, 32–41.
Hu, B. S.; Xue, J. T.; Jiang, D. J.; Tan, P. C.; Wang, Y. Q.; Liu, M. H.; Yu, H. L.; Zou, Y.; Li, Z. Wearable exoskeleton system for energy harvesting and angle sensing based on a piezoelectric cantilever generator array. ACS Appl. Mater. Interfaces 2022, 14, 36622–36632.
Zou, Y.; Gai, Y. S.; Tan, P. C.; Jiang, D. J.; Qu, X. C.; Xue, J. T.; Ouyang, H.; Shi, B. J.; Li, L. L.; Luo, D. et al. Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam. Res. 2022, 18, 619–628.
Liu, J. H.; Xu, P.; Zheng, J. X.; Liu, X. Y.; Wang, X. Y.; Wang, S. Y.; Guan, T. Z.; Xie, G. M.; Xu, M. Y. Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance. Nano Energy 2022, 101, 107633.
Xu, P.; Liu, J. H.; Liu, X. Y.; Wang, X. Y.; Zheng, J. X.; Wang, S. Y.; Chen, T. Y.; Wang, H.; Wang, C.; Fu, X. P. et al. A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception. npj Flex. Electron. 2022, 6, 25.
Xu, P.; Wang, X. Y.; Wang, S. Y.; Chen, T. Y.; Liu, J. H.; Zheng, J. X.; Li, W. X.; Xu, M. Y.; Tao, J.; Xie, G. M. A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping. Research 2021, 2021, 9864967.
Song, Z. W.; Yin, J. H.; Wang, Z. H.; Lu, C. Y.; Yang, Z.; Zhao, Z. H.; Lin, Z. N.; Wang, J. Y.; Wu, C. S.; Cheng, J. et al. A flexible triboelectric tactile sensor for simultaneous material and texture recognition. Nano Energy 2022, 93, 106798
Jose, J.; Dinakaran, D.; Ramya, M. M.; Harris Samuel, D. G. A survey on magnetic wall-climbing robots for inspection. Int. J. Mech. Prod. Eng. Res. Dev. 2018, 8, 59–68.
Chen, X. L.; Wu, Y. P.; Hao, H. D.; Shi, H. L.; Huang, H. C. Tracked wall-climbing robot for calibration of large vertical metal tanks. Appl. Sci. 2019, 9, 2671.
Xu, Z. L.; Ma, P. S. A wall-climbing robot for labelling scale of oil tank’s volume. Robotica 2002, 20, 209–212.
Meng, H. Y.; Yu, Q.; Liu, Z.; Gai, Y. S.; Xue, J. T.; Bai, Y.; Qu, X. C.; Tan, P. C.; Luo, D.; Huang, W. W. et al. Triboelectric performances of biodegradable polymers. Matter 2023, 6, 4274–4290.
Li, Y. H.; Yu, J. R.; Wei, Y. C.; Wang, Y. F.; Feng, Z. Y.; Cheng, L. Q.; Huo, Z. W.; Lei, Y. Q.; Sun, Q. J. Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 2023, 23, 1329.
Liu, J. R.; Huang, H.; Zhou, Q.; Wu, C. Self-powered downhole drilling tools vibration sensor based on triboelectric nanogenerator. IEEE Sens. J. 2022, 22, 2250–2258.
Zhu, J.; Hou, X. J.; Niu, X. S.; Guo, X. P.; Zhang, J.; He, J.; Guo, T.; Chou, X. J.; Xue, C. Y.; Zhang, W. D. The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor. Sens. Actuators A Phys. 2017, 263, 317–325.
Zhao, H. F.; Shu, M. R.; Ai, Z. H.; Lou, Z. R.; Sou, K. W.; Lu, C. Y.; Jin, Y. C.; Wang, Z. H.; Wang, J. Y.; Wu, C. S. et al. A highly sensitive triboelectric vibration sensor for machinery condition monitoring. Adv. Energy Mater. 2022, 12, 2201132.
Li, P.; Liu, Y. B.; Zhang, H.; Hu, Z. P.; Jia, L. N.; Liu, D. K.; Yu, L.; Li, B.; Yao, Y. W. All-nanofiber self-powered PTFE/PA66 device for real-time breathing monitor by scalable solution blow spinning technology. Nano Res. 2022, 15, 8458–8464.
Xu, J. H.; Wei, X. L.; Li, R. N.; Shi, Y. P.; Peng, Y. T.; Wu, Z. Y.; Wang, Z. L. Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping. Nano Res. 2022, 15, 6483–6489.
Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789–1795.
Tan, P. C.; Han, X.; Zou, Y.; Qu, X. C.; Xue, J. T.; Li, T.; Wang, Y. Q.; Luo, R. Z.; Cui, X.; Xi, Y. et al. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Adv. Mater. 2022, 34, 2200793.
Yang, Q. Y.; Yang, S. Q.; Qiu, P. F.; Peng, L. M.; Wei, T. R.; Zhang, Z.; Shi, X.; Chen, L. D. Flexible thermoelectrics based on ductile semiconductors. Science 2022, 377, 854–858.
Wang, Y.; Wu, C.; Yang, S. A self-powered rotating speed sensor for downhole motor based on triboelectric nanogenerator. IEEE Sens. J. 2021, 21, 4310–4316.
Zhang, X. S.; Gao, Q.; Gao, Q.; Yu, X.; Cheng, T. H.; Wang, Z. L. Triboelectric rotary motion sensor for industrial-grade speed and angle monitoring. Sensors 2021, 21, 1713.
Qin, Y. H.; Fu, X. P.; Lin, Y.; Wang, Z.; Cao, J.; Zhang, C. Self-powered internet of things sensing node based on triboelectric nanogenerator for sustainable environmental monitoring. Nano Res. 2023, 16, 11878–11884.
Zhang, B. S.; Li, W. B.; Ge, J. W.; Chen, C. G.; Yu, X.; Wang, Z. L.; Cheng, T. H. Single-material-substrated triboelectric-electromagnetic hybrid generator for self-powered multifunctional sensing in intelligent greenhouse. Nano Res. 2023, 16, 3149–3155.
Cheng, T. H.; Shao, J. J.; Wang, Z. L. Triboelectric nanogenerators. Nat. Rev. Methods Primers 2023, 3, 39.
Zhou, Y. K.; Shen, M. L.; Cui, X.; Shao, Y. C.; Li, L. J.; Zhang, Y. Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 2021, 84, 105887.
Kim, W. G.; Kim, D. W.; Tcho, I. W.; Kim, J. K.; Kim, M. S.; Choi, Y. K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287.
Gao, Q.; Cheng, T. H.; Wang, Z. L. Triboelectric mechanical sensors—Progress and prospects. Extreme Mech. Lett. 2021, 42, 101100.