AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mechanocatalysis of CO to CO2 on TiO2 surface controlled at atomic scale

Yuuki Adachi1Robert Turanský2Ján Brndiar3Kamil Tokár3Qiang Zhu1Huan Fei Wen5Yasuhiro Sugawara1Ivan Štich3,4Yan Jun Li1( )
Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Institute of Physics, Slovak Academy of Sciences, Bratislava 84511, Slovakia
Institute of Informatics, Slovak Academy of Sciences, Bratislava 84507, Slovakia
Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Trnava 91701, Slovakia
Key Laboratory of Instrumentation Science and Dynamic Measurement, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
Show Author Information

Graphical Abstract

The scanning probe microscopy resolved the atomic mechanocatalytic reaction.

Abstract

The common ways to activate a chemical reaction are by heat, electric current, or light. However, mechanochemistry, where the chemical reaction is activated by applied mechanical force, is less common and only poorly understood at the atomic scale. Here we report a tip-induced activation of chemical reaction of carbon monoxide to dioxide on oxidized rutile TiO2 (110) surface. The activation is studied by atomic force microscopy, Kelvin probe force microscopy under ultrahigh-vacuum and liquid nitrogen temperature conditions, and density functional theory (DFT) modeling. The reaction is inferred from hysteretic behavior of frequency shift signal further supported by vector force mapping of vertical and lateral forces needed to trigger the chemical reaction with torque motion of carbon monoxide towards an oxygen adatom. The reaction is found to proceed stochastically at very small tip-sample distances. Furthermore, the local contact potential difference reveals the atomic-scale charge redistribution in the reactants required to unlock the reaction. Our results open up new insights into the mechanochemistry on metal oxide surfaces at the atomic scale.

Electronic Supplementary Material

Download File(s)
6539_ESM.pdf (2.7 MB)

References

[1]

Garcia-Manyes, S.; Beedle, A. E. M. Steering chemical reactions with force. Nat. Rev. Chem. 2017, 1, 0083.

[2]

Liang, J.; Fernández, J. M. Mechanochemistry: One bond at a time. ACS Nano 2009, 3, 1628–1645.

[3]

Davis, D. A.; Hamilton, A.; Yang, J. L.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martínez, T. J.; White, S. R. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 2009, 459, 68–72.

[4]

Hickenboth, C. R.; Moore, J. S.; White, S. R.; Sottos, N. R.; Baudry, J.; Wilson, S. R. Biasing reaction pathways with mechanical force. Nature 2007, 446, 423–427.

[5]

Wiita, A. P.; Perez-Jimenez, R.; Walther, K. A.; Gräter, F.; Berne, B. J.; Holmgren, A.; Sanchez-Ruiz, J. M.; Fernandez, J. M. Probing the chemistry of thioredoxin catalysis with force. Nature 2007, 450, 124–127.

[6]

Wiita, A. P.; Ainavarapu, S. R. K.; Huang, H. H.; Fernandez, J. M. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl. Acad. Sci. USA 2006, 103, 7222–7227.

[7]

Ikeda, S.; Takata, T.; Kondo, T.; Hitoki, G.; Hara, M.; Kondo, J. N.; Domen, K.; Hosono, H.; Kawazoe, H.; Tanaka, A. Mechano-catalytic overall water splitting. Chem. Commun. 1998, 2185–2186

[8]

den Boer, D.; Shklyarevskii, O. I.; Coenen, M. J. J.; van der Maas, M.; Peters, T. P. J.; Elemans, J. A. A. W.; Speller, S. Mechano-catalysis: Cyclohexane oxidation in a silver nanowire break junction. J. Phys. Chem. C 2011, 115, 8295–8299.

[9]

Nguyen, T. Q.; Kausch, H. H. Effects of solvent viscosity on polystyrene degradation in transient elongational flow. Macromolecules 1990, 23, 5137–5145.

[10]

Sohma, J. Mechanochemistry of polymers. Prog. Polym. Sci. 1989, 14, 451–596.

[11]

Procyk, A. D.; Bocia, D. F. Vibrational characteristics of tetrapyrrolic macrocycles. Annu. Rev. Phys. Chem. 1992, 43, 465–496.

[12]

Nguyen, K. L.; Friščič, T.; Day, G. M.; Gladden, L. F.; Jones, W. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nat. Mater. 2007, 6, 206–209.

[13]

Peller, D.; Kastner, L. Z.; Buchner, T.; Roelcke, C.; Albrecht, F.; Moll, N.; Huber, R.; Repp, J. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 2020, 585, 58–62.

[14]

Ladenthin, J. N.; Frederiksen, T.; Persson, M.; Sharp, J. C.; Gawinkowski, S.; Waluk, J.; Kumagai, T. Force-induced tautomerization in a single molecule. Nat. Chem. 2016, 8, 935–940.

[15]

Qi, J.; Gao, Y. X.; Jia, H. H.; Richter, M.; Huang, L.; Cao, Y.; Yang, H.; Zheng, Q.; Berger, R.; Liu, J. Z. et al. Force-activated isomerization of a single molecule. J. Am. Chem. Soc. 2020, 142, 10673–10680.

[16]

Shiotari, A.; Nakae, T.; Iwata, K.; Mori, S.; Okujima, T.; Uno, H.; Sakaguchi, H.; Sugimoto, Y. Strain-induced skeletal rearrangement of a polycyclic aromatic hydrocarbon on a copper surface. Nat. Commun. 2017, 8, 16089.

[17]

Ishii, A.; Shiotari, A.; Sugimoto, Y. Mechanically induced single-molecule helicity switching of graphene-nanoribbon-fused helicene on Au (111). Chem. Sci. 2021, 12, 13301–13306.

[18]

Emmrich, M.; Huber, F.; Pielmeier, F.; Welker, J.; Hofmann, T.; Schneiderbauer, M.; Meuer, D.; Polesya, S.; Mankovsky, S.; Ködderitzsch, D. et al. Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science 2015, 348, 308–311.

[19]

Sugimoto, Y.; Pou, P.; Abe, M.; Jelinek, P.; Pérez, R.; Morita, S.; Custance, Ó. Chemical identification of individual surface atoms by atomic force microscopy. Nature 2007, 446, 64–67.

[20]

Ternes, M.; Lutz, C. P.; Hirjibehedin, C. F.; Giessibl, F. J.; Heinrich, A. J. The force needed to move an atom on a surface. Science 2008, 319, 1066–1069.

[21]

Esat, T.; Friedrich, N.; Tautz, F. S.; Temirov, R. A standing molecule as a single-electron field emitter. Nature 2018, 558, 573–576.

[22]

Stroscio, J. A.; Celotta, R. J. Controlling the dynamics of a single atom in lateral atom manipulation. Science 2004, 306, 242–247.

[23]

Langewisch, G.; Falter, J.; Fuchs, H.; Schirmeisen, A. Forces during the controlled displacement of organic molecules. Phys. Rev. Lett. 2013, 110, 036101.

[24]

Emmrich, M.; Schneiderbauer, M.; Huber, F.; Weymouth, A. J.; Okabayashi, N.; Giessibl, F. J. Force field analysis suggests a lowering of diffusion barriers in atomic manipulation due to presence of STM tip. Phys. Rev. Lett. 2015, 114, 146101.

[25]

Shiotari, A.; Odani, T.; Sugimoto, Y. Torque-induced change in configuration of a single NO molecule on Cu (110). Phys. Rev. Lett. 2018, 121, 116101.

[26]

Adachi, Y.; Sugawara, Y.; Li, Y. J. Probing CO on a rutile TiO2 (110) surface using atomic force microscopy and Kelvin probe force microscopy. Nano Res. 2022, 15, 1909–1915.

[27]

Grill, L.; Rieder, K. H.; Moresco, F.; Stojkovic, S.; Gourdon, A.; Joachim, C. Exploring the interatomic forces between tip and single molecules during STM manipulation. Nano Lett. 2006, 6, 2685–2689.

[28]

Hla, S. W.; Braun, K. F.; Rieder, K. H. Single-atom manipulation mechanisms during a quantum corral construction. Phys. Rev. B 2003, 67, 201402.

[29]

Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229.

[30]

Reticcioli, M.; Sokolović, I.; Schmid, M.; Diebold, U.; Setvin, M.; Franchini, C. Interplay between adsorbates and polarons: CO on rutile TiO2 (110). Phys. Rev. Lett. 2019, 122, 016805.

[31]

Zhao, Y.; Wang, Z.; Cui, X. F.; Huang, T.; Wang, B.; Luo, Y.; Yang, J. L.; Hou, J. G. What are the adsorption sites for CO on the reduced TiO2 (110)-1 × 1 surface. J. Am. Chem. Soc. 2009, 131, 7958–7959.

[32]

Wang, Z.; Zhao, Y.; Cui, X. F.; Tan, S. J.; Zhao, A. D.; Wang, B.; Yang, J. L.; Hou, J. G. Adsorption of CO on rutile TiO2 (110)-1 × 1 surface with preadsorbed O adatoms. J. Phys. Chem. C 2010, 114, 18222–18227.

[33]

Lee, J.; Zhang, Z.; Deng, X. Y.; Sorescu, D. C.; Matranga, C.; Yates, J. T. Jr. Interaction of CO with oxygen adatoms on TiO2 (110) . J. Phys. Chem. C 2011, 115, 4163–4167.

[34]

Ramalho, J. P. P.; Illas, F.; Gomes, J. R. B. Adsorption of CO on the rutile TiO2 (110) surface: A dispersion-corrected density functional theory study. Phys. Chem. Chem. Phys. 2017, 19, 2487–2494.

[35]

Hu, S. L.; Wang, Z.; Mattsson, A.; Österlund, L.; Hermansson, K. Simulation of IRRAS spectra for molecules on oxide surfaces: CO on TiO2 (110). J. Phys. Chem. C 2015, 119, 5403–5411.

[36]

Petrik, N. G.; Mu, R. T.; Dahal, A.; Wang, Z. T.; Lyubinetsky, I.; Kimmel, G. A. Diffusion and photon-stimulated desorption of CO on TiO2 (110). J. Phys. Chem. C 2018, 122, 15382–15389.

[37]

Petrik, N. G.; Kimmel, G. A. Adsorption geometry of CO versus coverage on TiO2 (110) from S- and P-polarized infrared spectroscopy. J. Phys. Chem. Lett. 2012, 3, 3425–3430.

[38]

Lee, J.; Sorescu, D. C.; Deng, X. Y. Electron-induced dissociation of CO2 on TiO2 (110). J. Am. Chem. Soc. 2011, 133, 10066–10069.

[39]

Lee, J.; Sorescu, D. C.; Deng, X. Y.; Jordan, K. D. Diffusion of CO2 on the rutile TiO2 (110) surface. J. Phys. Chem. Lett. 2011, 2, 3114–3117.

[40]

Tan, S. J.; Zhao, Y.; Zhao, J.; Wang, Z.; Ma, C. X.; Zhao, A. D.; Wang, B.; Luo, Y.; Yang, J. L.; Hou, J. G. CO2 dissociation activated through electron attachment on the reduced rutile TiO2 (110)-1 × 1 surface. Phys. Rev. B 2011, 84, 155418.

[41]

Lin, X.; Wang, Z. T.; Lyubinetsky, I.; Kay, B. D.; Dohnálek, Z. Interaction of CO2 with oxygen adatoms on rutile TiO2 (110). Phys. Chem. Chem. Phys. 2013, 15, 6190–6195.

[42]

Lin, X.; Yoon, Y.; Petrik, N. G.; Li, Z. J.; Wang, Z. T.; Glezakou, V. A.; Kay, B. D.; Lyubinetsky, I.; Kimmel, G. A.; Rousseau, R. et al. Structure and dynamics of CO2 on rutile TiO2 (110)-1 × 1. J. Phys. Chem. C 2012, 116, 26322–26334.

[43]

Petrik, N. G.; Kimmel, G. A. Off-normal CO2 desorption from the photooxidation of CO on reduced TiO2 (110). J. Phys. Chem. Lett. 2010, 1, 2508–2513.

[44]

Adachi, Y.; Sugawara, Y.; Li, Y. J. Atomic scale three-dimensional Au nanocluster on a rutile TiO2 (110) surface resolved by atomic force microscopy. J. Phys. Chem. Lett. 2020, 11, 7153–7158.

[45]

Wen, H. F.; Miyazaki, M.; Zhang, Q. Z.; Adachi, Y.; Li, Y. J.; Sugawara, Y. Direct observation of atomic step edges on the rutile TiO2 (110)-(1 × 1) surface using atomic force microscopy. Phys. Chem. Chem. Phys. 2018, 20, 28331–28337.

[46]

Sun, Z. X.; Boneschanscher, M. P.; Swart, I.; Vanmaekelbergh, D.; Liljeroth, P. Quantitative atomic force microscopy with carbon monoxide terminated tips. Phys. Rev. Lett. 2011, 106, 046104.

[47]

Adachi, Y.; Wen, H. F.; Zhang, Q. Z.; Miyazaki, M.; Sugawara, Y.; Sang, H. Q.; Brndiar, J.; Kantorovich, L.; Štich, I.; Li, Y. J. Tip-induced control of charge and molecular bonding of oxygen atoms on the rutile TiO2 (110) surface with atomic force microscopy. ACS Nano 2019, 13, 6917–6924.

[48]

Zhang, Q. Z.; Li, Y. J.; Wen, H. F.; Adachi, Y.; Miyazaki, M.; Sugawara, Y.; Xu, R.; Cheng, Z. H.; Brndiar, J.; Kantorovich, L. et al. Measurement and manipulation of the charge state of an adsorbed oxygen adatom on the rutile TiO2 (110)-1 × 1 surface by nc-AFM and KPFM. J. Am. Chem. Soc. 2018, 140, 15668–15674.

[49]

Guggisberg, M.; Bammerlin, M.; Loppacher, C.; Pfeiffer, O.; Abdurixit, A.; Barwich, V.; Bennewitz, R.; Baratoff, A.; Meyer, E.; Güntherodt, H. J. Separation of interactions by noncontact force microscopy. Phys. Rev. B 2000, 61, 11151.

[50]

Hamaker, H. C. The London–van der Waals attraction between spherical particles. Physica 1937, 4, 1058–1072.

[51]

Kumagai, T.; Hanke, F.; Gawinkowski, S.; Sharp, J.; Kotsis, K.; Waluk, J.; Persson, M.; Grill, L. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nat. Chem. 2014, 6, 41–46.

[52]

Dieška, P.; Štich, I.; Pérez, R. Nanomanipulation using only mechanical energy. Phys. Rev. Lett. 2005, 95, 126103.

[53]

Naitoh, Y.; Turansky, R.; Brndiar, J.; Li, Y. J.; Štich, I.; Sugawara, Y. Subatomic-scale force vector mapping above a Ge (001) dimer using bimodal atomic force microscopy. Nat. Phys. 2017, 13, 663–667.

[54]

Sugimoto, Y.; Namikawa, T.; Miki, K.; Abe, M.; Morita, S. Vertical and lateral force mapping on the Si (111)-(7 × 7) surface by dynamic force microscopy. Phys. Rev. B 2008, 77, 195424.

[55]

Albers, B. J.; Schwendemann, T. C.; Baykara, M. Z.; Pilet, N.; Liebmann, M.; Altman, E. I.; Schwarz, U. D. Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat. Nanotechnol. 2009, 4, 307–310.

[56]

Ruschmeier, K.; Schirmeisen, A.; Hoffmann, R. Atomic-scale force-vector fields. Phys. Rev. Lett. 2008, 101, 156102.

[57]

Pawlak, R.; Fremy, S.; Kawai, S.; Glatzel, T.; Fang, H. J.; Fendt, L. A.; Diederich, F.; Meyer, E. Directed rotations of single porphyrin molecules controlled by localized force spectroscopy. ACS Nano 2012, 6, 6318–6324.

[58]

Gross, L.; Mohn, F.; Liljeroth, P.; Repp, J.; Giessibl, F. J.; Meyer, G. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 2009, 324, 1428–1431.

[59]

Steurer, W.; Fatayer, S.; Gross, L.; Meyer, G. Probe-based measurement of lateral single-electron transfer between individual molecules. Nat. Commun. 2015, 6, 8353.

[60]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[61]

Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.

Nano Research
Pages 5826-5834
Cite this article:
Adachi Y, Turanský R, Brndiar J, et al. Mechanocatalysis of CO to CO2 on TiO2 surface controlled at atomic scale. Nano Research, 2024, 17(7): 5826-5834. https://doi.org/10.1007/s12274-024-6539-z
Topics:

1135

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 November 2023
Revised: 16 January 2024
Accepted: 02 February 2024
Published: 03 April 2024
© Tsinghua University Press 2024
Return