AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Investigation of operation and degradation mechanisms in ZnTeSe blue quantum-dot light-emitting diodes by identifying recombination zone

Oul Cho1,2Sujin Park1,2Hogeun Chang2Jiwhan Kim2Jaekwon Kim1Sungwoo Kim2Taehyung Kim2( )Jeonghun Kwak1( )
Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
Material Research Center, Samsung Advanced Institute of Technology, Suwon, Gyeonggi-do 16419, Republic of Korea
Show Author Information

Graphical Abstract

The recombination zones (RZs) of ZnTeSe blue quantum dot light-emitting diodes (QD-LEDs) were investigated by fabricating devices with stacked emission layers (EMLs) of EML1 and EML2. The identification of recombination zones (RZs) and transient dynamics reveals the operational and degradation mechanisms of ZnTeSe blue QD-LEDs.

Abstract

ZnTeSe quantum dots (QDs), recognized as promising eco-friendly blue electroluminescent emitters, remain under-explored in light-emitting diode (LED) applications. Here, to elucidate the operation and degradation mechanisms of ZnTeSe blue QD-LEDs, stacked ZnTeSe QD layers with discernable luminescence are designed by varying Te doping concentrations, and the recombination zones (RZs) of the blue QD-LEDs are investigated. The RZs are identified near the hole-transport layer (HTL), confirmed by angular-dependent electroluminescence measurements and optical simulations. In addition, in order to investigate carrier dynamics in the process of recombination, the transient electroluminescence (tr-EL) signals of the dichromatic QD-LEDs are analyzed. As a result, it is inferred that the RZ initially formed near the electron-transport layer (ETL) due to the high injection barriers of electrons. However, due to the fast electron mobility, the RZ shifts toward the HTL as the operating current increases. After the device lifetime tests, the RZ remains stationary while the photoluminescence (PL) corresponding to the RZ undergoes a substantial decrease, indicating that the degradation is accelerated by the concentrated RZ. Thus this study contributes to a deeper understanding of the operational mechanisms of ZnTeSe blue QD-LEDs.

Electronic Supplementary Material

Download File(s)
6541_ESM.pdf (4.4 MB)

References

[1]

Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

[2]

Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

[3]

Li, X. Y.; Lin, Q. L.; Song, J. J.; Shen, H. B.; Zhang, H. M.; Li, L. S.; Li, X. G.; Du, Z. L. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness. Adv. Opt. Mater. 2020, 8, 1901145.

[4]

Wang, L. S.; Lin, J.; Hu, Y. S.; Guo, X. Y.; Lv, Y.; Tang, Z. B.; Zhao, J. L.; Fan, Y.; Zhang, N.; Wang, Y. J. et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency. ACS Appl. Mater. Interfaces 2017, 9, 38755–38760.

[5]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

[6]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[7]

Ye, Y. X.; Zheng, X. R.; Chen, D. S.; Deng, Y. Z.; Chen, D.; Hao, Y. L.; Dai, X. L.; Jin, Y. Z. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 2020, 11, 4649–4654.

[8]

Chen, X. T.; Lin, X. F.; Zhou, L. K.; Sun, X. J.; Li, R.; Chen, M. Y.; Yang, Y. X.; Hou, W. J.; Wu, L. J.; Cao, W. R. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface–bulk coupling. Nat Commun. 2023, 14, 284.

[9]

Jang, H. J.; Lee, J. Y.; Baek, G. W.; Kwak, J.; Park, J. H. Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years. J. Inf. Disp. 2022, 23, 1–17.

[10]

Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.

[11]

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

[12]

Yu, P.; Cao, S.; Shan, Y. L.; Bi, Y. H.; Hu, Y. Q.; Zeng, R. S.; Zou, B. S.; Wang, Y. J.; Zhao, J. L. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl. 2022, 11, 162.

[13]

Wang, Y. M.; Wu, Q. Q.; Wang, L.; Sun, Z. J.; Cao, F.; Kong, L. M.; Li, L. F.; Zhang, C. X.; Wang, S.; Zhang, Z. J. et al. Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation. J. Mater. Chem. C 2022, 10, 8192–8198.

[14]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[15]

Wang, A. Q.; Shen, H. B.; Zang, S. P.; Lin, Q. L.; Wang, H. Z.; Qian, L.; Niu, J. Z.; Li, L. S. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale 2015, 7, 2951–2959.

[16]

Lin, Q. L.; Shen, H. B.; Wang, H. Z.; Wang, A. Q.; Niu, J. Z.; Qian, L.; Guo, F.; Li, L. S. Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers. Org. Electron. 2015, 25, 178–183.

[17]

Han, C. Y.; Lee, S. H.; Song, S. W.; Yoon, S. Y.; Jo, J. H.; Jo, D. Y.; Kim, H. M.; Lee, B. J.; Kim, H. S.; Yang, H. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett. 2020, 5, 1568–1576.

[18]

Jang, E. P.; Han, C. Y.; Lim, S. W.; Jo, J. H.; Jo, D. Y.; Lee, S. H.; Yoon, S. Y.; Yang, H. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 2019, 11, 46062–46069.

[19]

Yuan, C. X.; Tian, F. S.; Chen, S. M. ZnSeTe blue top-emitting QLEDs with color saturation near Rec.2020 standards and efficiency over 18.16%. Nano Res. 2023, 16, 5517–5524.

[20]

Zhang, H.; Ma, X. Y.; Lin, Q. L.; Zeng, Z. P.; Wang, H. Z.; Li, L. S.; Shen, H. B.; Jia, Y.; Du, Z. L. High-brightness blue InP quantum dot-based electroluminescent devices: The role of shell thickness. J. Phys. Chem. Lett. 2020, 11, 960–967.

[21]

Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K. et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005303.

[22]

Zhang, W. D.; Tan, Y. Z.; Duan, X. J.; Zhao, F. Q.; Liu, H. C.; Chen, W.; Liu, P.; Liu, X. G.; Wang, K.; Zhang, Z. K. et al. High quantum yield blue InP/ZnS/ZnS quantum dots based on bromine passivation for efficient blue light-emitting diodes. Adv. Opt. Mater. 2022, 10, 2200685.

[23]

Kim, J.; Hahm, D.; Bae, W. K.; Lee, H.; Kwak, J. Transient dynamics of charges and excitons in quantum dot light-emitting diodes. Small 2022, 18, 2202290.

[24]

Bae, W. K.; Kwak, J.; Lim, J.; Lee, D.; Nam, M. K.; Char, K.; Lee, C.; Lee, S. Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. Nano Lett. 2010, 10, 2368–2373.

[25]

Malliaras, G. G.; Scott, J. C. The roles of injection and mobility in organic light emitting diodes. J. Appl. Phys. 1998, 83, 5399–5403.

[26]

Coburn, C.; Forrest, S. R. Effects of charge balance and exciton confinement on the operational lifetime of blue phosphorescent organic light-emitting diodes. Phys. Rev. Appl. 2017, 7, 041002.

[27]

Erickson, N. C.; Holmes, R. J. Investigating the role of emissive layer architecture on the exciton recombination zone in organic light-emitting devices. Adv. Funct. Mater. 2013, 23, 5190–5198.

[28]

Song, W.; Kim, T.; Lee, Y.; Lee, J. Y. A stepwise energy level doping structure for improving the lifetime of phosphorescent organic light-emitting diodes. J. Mater. Chem. C 2017, 5, 3948–3954.

[29]

Jesuraj, P. J.; Hafeez, H.; Kim, D. H.; Lee, J. C.; Lee, W. H.; Choi, D. K.; Kim, C. H.; Song, M.; Kim, C. S.; Ryu, S. Y. Recombination zone control without sensing layer and the exciton confinement in green phosphorescent OLEDs by excluding interface energy transfer. J. Phys. Chem. C 2018, 122, 2951–2958.

[30]

Van Mensfoort, S. L. M.; Carvelli, M.; Megens, M.; Wehenkel, D.; Bartyzel, M.; Greiner, H.; Janssen, R. A. J.; Coehoorn, R. Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution. Nat. Photonics 2010, 4, 329–335.

[31]

Qu, X. W.; Xiang, G. H.; Ma, J. R.; Liu, P.; Kyaw, A. K. K.; Wang, K.; Sun, X. W. Identifying the dominant carrier of CdSe-based blue quantum dot light-emitting diode. Appl. Phys. Lett. 2023, 122, 113501.

[32]

Han, C. Y.; Yoon, S. Y.; Lee, S. H.; Song, S. W.; Jo, D. Y.; Jo, J. H.; Kim, H. M.; Kim, H. S.; Yang, H. High-performance tricolored white lighting electroluminescent devices integrated with environmentally benign quantum dots. Nanoscale Horiz. 2021, 6, 168–176.

[33]

Fu, Y.; Kim, D.; Jiang, W.; Yin, W. P.; Ahn, T. K.; Chae, H. Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots. RSC Adv. 2017, 7, 40866–40872.

[34]

Sun, J. H.; Huang, J. H.; Lan, X. Y.; Zhang, F. C.; Zhao, L. Z.; Zhang, Y. Enhancing the performance of blue quantum-dot light-emitting diodes through the incorporation of polyethylene glycol to passivate ZnO as an electron transport layer. RSC Adv. 2020, 10, 23121–23127.

[35]

Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294.

[36]

Davidson-Hall, T.; Aziz, H. Perspective: Toward highly stable electroluminescent quantum dot light-emitting devices in the visible range. Appl. Phys. Lett. 2020, 116, 010502.

[37]
Cai, W. B.; Ren, Y. J.; Huang, Z. G.; Sun, Q.; Shen, H. C.; Wang, Y. Emission mechanism of bright and eco-friendly ZnSeTe quantum dots. Adv. Opt. Mater., in press, https://doi.org/10.1002/adom.202301970.
[38]

Barth, S.; Müller, P.; Riel, H.; Seidler, P. F.; Rieß, W.; Vestweber, H.; Bässler, H. Electron mobility in tris(8-hydroxy-quinoline)aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes. J. Appl. Phys. 2001, 89, 3711–3719.

[39]

Su, Q.; Zhang, H.; Chen, S. M. Identification of excess charge carriers in InP-based quantum-dot light-emitting diodes. Appl. Phys. Lett. 2020, 117, 053502.

[40]

Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

[41]

Chang, J. H.; Lee, H. J.; Rhee, S.; Hahm, D.; Jeong, B. G.; Nagamine, G.; Padilha, L. A.; Char, K.; Hwang, E.; Bae, W. K. Pushing the band gap envelope of quasi-type II heterostructured nanocrystals to blue: ZnSe/ZnSe1− x Te x /ZnSe spherical quantum wells. Adv. Energy Mater. 2021, 2021, 3245731.

[42]

Huang, Z. G.; Sun, Q.; Zhao, S. Y.; Wu, B. Q.; Zhang, M. S.; Zang, Z. G.; Wang, Y. Deciphering ultrafast carrier dynamics of eco-friendly ZnSeTe-based quantum dots: Toward high-quality blue-green emitters. J. Phys. Chem. Lett. 2021, 12, 11931–11938.

[43]
Gao, P. L.; Chen, Z. N.; Chen, S. M. Electron-induced degradation in blue quantum-dot light-emitting diodes. Adv. Mater., in press, https://doi.org/10.1002/adma.202309123.
[44]

Tanaka, M.; Noda, H.; Nakanotani, H.; Adachi, C. Effect of carrier balance on device degradation of organic light-emitting diodes based on thermally activated delayed fluorescence emitters. Adv. Electron. Mater. 2019, 5, 1800708.

[45]

Lee, S.; Ha, H.; Lee, J. Y.; Shon, H. K.; Lee, T. G.; Suh, M. C.; Park, Y. Degradation mechanism of solution-processed organic light-emitting diodes: Sputter depth-profile study. Appl. Surf. Sci. 2021, 564, 150402.

[46]

Jeon, S. K.; Lee, J. Y. Direct monitoring of recombination zone shift during lifetime measurement of phosphorescent organic light-emitting diodes. J. Ind. Eng. Chem. 2015, 32, 332–335.

[47]

Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

Nano Research
Pages 6527-6533
Cite this article:
Cho O, Park S, Chang H, et al. Investigation of operation and degradation mechanisms in ZnTeSe blue quantum-dot light-emitting diodes by identifying recombination zone. Nano Research, 2024, 17(7): 6527-6533. https://doi.org/10.1007/s12274-024-6541-5
Topics:

748

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 23 November 2023
Revised: 13 January 2024
Accepted: 02 February 2024
Published: 14 March 2024
© Tsinghua University Press 2024
Return