AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Programmable and reconfigurable humidity-driven actuators made with MXene (Ti3C2Tx)-cellulose nanofiber composites for biomimetic applications

Shaofeng Zeng1Yuanji Ye2Peidi Zhou3Shimin Yi1Qiaohang Guo2Huamin Chen4 ( )Guozhen Shen5( )Mingcen Weng2( )
School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China
School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350118, China
Institute of Smart Marine and Engineering, Fujian University of Technology, Fuzhou 350118, China
Fujian Key Laboratory of Functional Marine Sensing Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

MXene-cellulose nanofiber composite film with a brick-and-mortar hierarchical structure demonstrates impressive mechanical properties and water-assisted shaping/welding ability. The humidity actuators based on it showcase a rapid response rate, programmable/reconfigurable motions, and bionic applications.

Abstract

Smart actuators have a wide range of applications in bionics and energy conversion. The ability to reconfigure shape is essential for soft actuators to achieve various shapes and deformations, which is a crucial feature for next-generation actuators. Nonetheless, it is still an enormous challenge to establish a straightforward approach to creating programmable and reconfigurable actuators. MXene-cellulose nanofiber composite film (MCCF) with a brick-and-mortar hierarchical structure was produced through a vacuum filtration process. MCCF demonstrates impressive mechanical properties such as a tensile stress of 68 MPa and a Young’s modulus of 4.65 GPa. Besides, the MCCF highlights its potential for water-assisted shaping/welding due to the abundance of hydrogen bonds between MXene and cellulose nanofibers. MCCF also showcases capabilities as a humidity-driven actuator with a rapid response rate of 550 °·s−1. Using the methods of water-assisted shaping/welding, several bionic actuators (such as flower, butterfly, and muscle) based on MCCF were designed, highlighting their versatility in applications of smart actuators. The research showcases the impressive capabilities of MXene-based actuators and offers beneficial insights for the advancement of future intelligent materials.

Electronic Supplementary Material

Video
6542_ESM2.mp4
6542_ESM3.mp4
6542_ESM4.mp4
6542_ESM5.mp4
Download File(s)
6542_ESM1.pdf (1,000.8 KB)

References

[1]

Lan, R. C.; Shen, W. B.; Yao, W. H.; Chen, J. Y.; Chen, X. Y.; Yang, H. Bioinspired humidity-responsive liquid crystalline materials: From adaptive soft actuators to visualized sensors and detectors. Mater. Horiz. 2023, 10, 2824–2844.

[2]

Li, W. J.; Guan, Q. W.; Li, M.; Saiz, E.; Hou, X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog. Polym. Sci. 2023, 140, 101665.

[3]

Zhang, Y. L.; Li, J. C.; Zhou, H.; Liu, Y. Q.; Han, D. D.; Sun, H. B. Electro-responsive actuators based on graphene. Innovation 2021, 2, 100168.

[4]

Wang, X. Q.; Chan, K. H.; Cheng, Y.; Ding, T. P.; Li, T. T.; Achavananthadith, S.; Ahmet, S.; Ho, J. S.; Ho, G. W. Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 2020, 32, 2000351.

[5]

Wang, X. Q.; Tan, C. F.; Chan, K. H.; Lu, X.; Zhu, L. L.; Kim, S. W.; Ho, G. W. In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation. Nat. Commun. 2018, 9, 3438.

[6]

Kim, Y.; Zhao, X. H. Magnetic soft materials and robots. Chem. Rev. 2022, 122, 5317–5364.

[7]

Ling, Y.; Pang, W. B.; Li, X. P.; Goswami, S.; Xu, Z.; Stroman, D.; Liu, Y. C.; Fei, Q. H.; Xu, Y. D.; Zhao, G. G. et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human–soft actuators interaction. Adv. Mater. 2020, 32, 1908475.

[8]

Dai, L.; Ma, M. S.; Xu, J. K.; Si, C. L.; Wang, X. H.; Liu, Z.; Ni, Y. H. All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chem. Mater. 2020, 32, 4324–4330.

[9]

Zhang, Y. L.; Ma, J. N.; Liu, S.; Han, D. D.; Liu, Y. Q.; Chen, Z. D.; Mao, J. W.; Sun, H. B. A “Yin”–“Yang” complementarity strategy for design and fabrication of dual-responsive bimorph actuators. Nano Energy 2020, 68, 104302.

[10]

Yu, K. Q.; Ji, X. Z.; Yuan, T. Y.; Cheng, Y.; Li, J. J.; Hu, X. Y.; Liu, Z. F.; Zhou, X.; Fang, L. Robust jumping actuator with a shrimp-shell architecture. Adv. Mater. 2021, 33, 2104558.

[11]

Li, J. J.; Mou, L. L.; Zhang, R.; Sun, J. K.; Wang, R.; An, B. G.; Chen, H.; Inoue, K.; Ovalle-Robles, R.; Liu, Z. F. Multi-responsive and multi-motion bimorph actuator based on super-aligned carbon nanotube sheets. Carbon 2019, 148, 487–495.

[12]

Wang, Y. L.; Cui, H. Q.; Zhao, Q. L.; Du, X. M. Chameleon-inspired structural-color actuators. Matter 2019, 1, 626–638.

[13]

Chen, L.; Zhang, Y. L.; Zhang, K. H.; Li, F.; Duan, G. G.; Sun, Y.; Wei, X. S.; Yang, X. X.; Wang, F.; Zhang, C. M. et al. Multi-stimuli responsive, shape deformation, and synergetic biomimetic actuator. Chem. Eng. J. 2024, 480, 148205.

[14]

Xu, L. L.; Zheng, H. W.; Xue, F. H.; Ji, Q. X.; Qiu, C. W.; Yan, Q.; Ding, R. J.; Zhao, X.; Hu, Y.; Peng, Q. Y. et al. Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion. Chem. Eng. J. 2023, 463, 142392.

[15]

Sun, J. K.; Guo, W. J.; Mei, G. K.; Wang, S. L.; Wen, K.; Wang, M. L.; Feng, D. Y.; Qian, D.; Zhu, M. F.; Zhou, X. et al. Artificial spider silk with buckled sheath by nano-pulley combing. Adv. Mater. 2023, 35, 2212112

[16]

Khan, A. Q.; Yu, K. Q.; Li, J. T.; Leng, X. Q.; Wang, M. L.; Zhang, X. S.; An, B. G.; Fei, B.; Wei, W.; Zhuang, H. C. et al. Spider silk supercontraction-inspired cotton-hydrogel self-adapting textiles. Adv. Fiber Mater. 2022, 4, 1572–1583.

[17]

Jia, T. J.; Wang, Y.; Dou, Y. Y.; Li, Y. W.; Jung De Andrade, M.; Wang, R.; Fang, S. L.; Li, J. J.; Yu, Z.; Qiao, R. et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater. 2019, 29, 1808241.

[18]

Shin, B.; Ha, J.; Lee, M.; Park, K.; Park, G. H.; Choi, T. H.; Cho, K. J.; Kim, H. Y. Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity. Sci. Robot. 2018, 3, eaar2629.

[19]

Yang, Z. X.; An, Y.; He, Y. L.; Lian, X. D.; Wang, Y. P. A programmable actuator as synthetic earthworm. Adv. Mater. 2023, 35, 2303805.

[20]

Li, X. Q.; Ma, B. R.; Dai, J. Y.; Sui, C.; Pande, D.; Smith, D. R.; Brinson, L. C.; Hsu, P. C. Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Sci. Adv. 2021, 7, eabj7906.

[21]

Chen, J.; Xu, H. Y.; Zhang, C. J.; Wu, R. L.; Fan, S. N.; Zhang, Y. P. Gradient structure enabled robust silk origami with moisture responsiveness. Chem. Eng. J. 2023, 454, 140021.

[22]

Mao, T. H.; Liu, Z. Y.; Guo, X. X.; Wang, Z. F.; Liu, J. J.; Wang, T.; Geng, S. B.; Chen, Y.; Cheng, P.; Zhang, Z. J. Engineering covalent organic frameworks with polyethylene glycol as self-sustained humidity-responsive actuators. Angew. Chem., Int. Ed. 2023, 62, 202216318.

[23]

Cao, J.; Zhou, Z. H.; Song, Q. C.; Chen, K. Y.; Su, G. H.; Zhou, T.; Zheng, Z.; Lu, C. H.; Zhang, X. X. Ultrarobust Ti3C2T x MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 2020, 14, 7055–7065.

[24]

Ye, Y. J.; Zhu, Y. K.; Zhou, P. D.; Weng, M. C. Multi-functional and integrated actuator based on carbon nanotube-cellulose nanofiber composites. Cellulose 2023, 30, 7221–7234.

[25]

Lu, H. H.; Wu, B. Y.; Yang, X. X.; Zhang, J. W.; Jian, Y. K.; Yan, H. Z.; Zhang, D. C.; Xue, Q. J.; Chen, T. Actuating supramolecular shape memorized hydrogel toward programmable shape deformation. Small 2020, 16, 2005461.

[26]

Le, X. X.; Lu, W.; Zhang, J. W.; Chen, T. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. 2019, 6, 1801584.

[27]

Li, X. K.; Liu, J. Z.; Li, D. D.; Huang, S. Q.; Huang, K.; Zhang, X. X. Bioinspired multi-stimuli responsive actuators with synergistic color-and morphing-change abilities. Adv. Sci. 2021, 8, 2101295.

[28]

Liu, Y. Q.; Chen, Z. D.; Han, D. D.; Mao, J. W.; Ma, J. N.; Zhang, Y. L.; Sun, H. B. Bioinspired soft robots based on the moisture-responsive graphene oxide. Adv. Sci. 2021, 8, 2002464.

[29]

Wang, W.; Han, B.; Zhang, Y.; Li, Q.; Zhang, Y. L.; Han, D. D.; Sun, H. B. Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect. Adv. Funct. Mater. 2021, 31, 2006179.

[30]

Ma, J. N.; Zhang, Y. L.; Han, D. D.; Mao, J. W.; Chen, Z. D.; Sun, H. B. Programmable deformation of patterned bimorph actuator swarm. Natl. Sci. Rev. 2020, 7, 775–785.

[31]

Lin, J.; Zhou, P. D.; Chen, Q. H.; Zhang, W.; Luo, Z. L.; Chen, L. Z. Reprogrammable, light-driven and sensing actuators based on Chinese ink composite: A synergetic use of shape-memory and self-healing strategies. Sens. Actuators B: Chem. 2022, 362, 131776.

[32]

Lin, J.; Zhou, P. D.; Wen, Z. Y.; Zhang, W.; Luo, Z. L.; Chen, L. Z. Chinese ink: A programmable, dual-responsive and self-sensing actuator using a healing-assembling method. Nanoscale 2021, 13, 20134–20143.

[33]

Weng, M. C.; Xiao, Y. W.; Yao, L. Q.; Zhang, W.; Zhou, P. D.; Chen, L. Z. Programmable and self-healing light-driven actuators through synergetic use of water-shaping and -welding methods. ACS Appl. Mater. Interfaces 2020, 12, 55125–55133.

[34]

Wang, J. F.; Liu, Y. Y.; Yang, Y. Q.; Wang, J. Q.; Kang, H.; Yang, H. P.; Zhang, D. J.; Cheng, Z. J.; Xie, Z. M.; Tan, H. F. et al. A weldable MXene film assisted by water. Matter 2022, 5, 1042–1055.

[35]

Xi, P. Y.; Wu, L.; Quan, F. Y.; Xia, Y. Z.; Fang, K. J.; Jiang, Y. J. Scalable nano building blocks of waterborne polyurethane and nanocellulose for tough and strong bioinspired nanocomposites by a self-healing and shape-retaining strategy. ACS Appl. Mater. Interfaces 2022, 14, 24787–24797.

[36]

Zhou, J. H.; Chen, H. M.; Zhou, P. D.; Peng, Q. L.; Guo, Q. H.; Wang, J.; Xu, Y.; You, M. H.; Weng, M. C. Ti3C2T x MXene nanosheet-functionalized leathers for versatile wearable electronics. ACS Appl. Nano Mater. 2023, 6, 18150–18164.

[37]

Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J. D.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80–83.

[38]

Wan, S. J.; Jiang, L.; Cheng, Q. F. Design principles of high-performance graphene films: Interfaces and alignment. Matter 2020, 3, 696–707.

[39]

Zhou, T. Z.; Ni, H.; Wang, Y. L.; Wu, C.; Zhang, H.; Zhang, J. Q.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Ultratough graphene-black phosphorus films. Proc. Natl. Acad. Sci. USA 2020, 117, 8727–8735.

[40]

Li, D. D.; Yuan, Q.; Huang, L. Z.; Zhang, W.; Guo, W. Y.; Ma, M. G. Preparation of flexible N-doped carbon nanotube/MXene/PAN nanocomposite films with improved electrochemical properties. Ind. Eng. Chem. Res. 2021, 60, 15352–15363.

[41]

Ventura-Cruz, S.; Tecante, A. Extraction and characterization of cellulose nanofibers from rose stems ( Rosa spp.). Carbohyd. Polym. 2019, 220, 53–59.

[42]

Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.

[43]

Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. Merger of structure and material in nacre and bone-perspectives on de novo biomimetic materials. Prog. Mater. Sci. 2009, 54, 1059–1100.

[44]

Weng, M. C.; Zhou, J. H.; Ye, Y. J.; Qiu, H. F.; Zhou, P. D.; Luo, Z. L.; Guo, Q. H. Self-chargeable supercapacitor made with MXene-bacterial cellulose nanofiber composite for wearable devices. J. Colloid Interface Sci. 2023, 647, 277–286.

[45]

Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

[46]

Luo, C.; Yeh, C. N.; Baltazar, J. M. L.; Tsai, C. L.; Huang, J. X. A cut-and-paste approach to 3D graphene-oxide-based architectures. Adv. Mater. 2018, 30, 1706229.

[47]

Cheng, H. H.; Huang, Y. X.; Cheng, Q. L.; Shi, G. Q.; Jiang, L.; Qu, L. T. Self-healing graphene oxide based functional architectures triggered by moisture. Adv. Funct. Mater. 2017, 27, 1703096.

[48]

Medhekar, N. V.; Ramasubramaniam, A.; Ruoff, R. S.; Shenoy, V. B. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 2010, 4, 2300–2306.

[49]

Zhao, Z.; Hwang, Y.; Yang, Y.; Fan, T. F.; Song, J. H.; Suresh, S.; Cho, N. J. Actuation and locomotion driven by moisture in paper made with natural pollen. Proc. Natl. Acad. Sci. USA 2020, 117, 8711–8718.

[50]

Wei, J.; Jia, S.; Wei, J.; Ma, C.; Shao, Z. Q. Tough and multifunctional composite film actuators based on cellulose nanofibers toward smart wearables. ACS Appl. Mater. Interfaces 2021, 13, 38700–38711.

[51]

Yang, L. Y.; Cui, J.; Zhang, L.; Xu, X. R.; Chen, X.; Sun, D. P. A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film. Adv. Funct. Mater. 2021, 31, 2101378.

Nano Research
Pages 6619-6629
Cite this article:
Zeng S, Ye Y, Zhou P, et al. Programmable and reconfigurable humidity-driven actuators made with MXene (Ti3C2Tx)-cellulose nanofiber composites for biomimetic applications. Nano Research, 2024, 17(7): 6619-6629. https://doi.org/10.1007/s12274-024-6542-4
Topics:

652

Views

7

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 19 December 2023
Revised: 25 January 2024
Accepted: 02 February 2024
Published: 03 April 2024
© Tsinghua University Press 2024
Return