AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Hard carbon for sodium storage: Mechanism and performance optimization

Yongxin Wang1Meng Li1Yu Zhang2( )Naiqing Zhang1( )
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Show Author Information

Graphical Abstract

This paper reviews the microstructure and sodium storage mechanism of hard carbon, and summarizes some performance enhancement strategies of hard carbon for sodium ion battery anodes.

Abstract

Due to the shortage of lithium resource reserves and the pressure of rising prices, sodium-ion batteries have regained the attention of the public, and shown great potential for application in the fields of grid energy storage and low-speed vehicles to achieve the purpose of complementing lithium-ion batteries, so it is imperative to promote the commercial application of sodium-ion batteries. For sodium-ion battery anode materials, hard carbon is the material most likely to be used commercially. However, there is still much work to be done before its commercialization. This review provides a comprehensive overview of the current research status from the following three aspects. First, the microstructure and sodium storage active sites of hard carbon are described. Then, the mechanism of sodium storage in hard carbon is investigated, which can be broadly categorized into four model, “insertion–filling”, “adsorption–insertion”, “adsorption–filling”, and “multistage”. Finally, from the perspective of improving the electrochemical performance of hard carbon, the performance improvement strategies proposed in recent years are summarized. Combined with the performance of hard carbon commercial products of some enterprises, the future development goal of hard carbon is prospected, hoping that all sectors of society can work hard for this common goal.

References

[1]

Chu, Y.; Zhang, J.; Zhang, Y. B.; Li, Q.; Jia, Y. R.; Dong, X. M.; Xiao, J.; Tao, Y.; Yang, Q. H. Reconfiguring hard carbons with emerging sodium-ion batteries: A perspective. Adv. Mater. 2023, 35, 2212186.

[2]

Chen, D. Q.; Zhang, W.; Luo, K. Y.; Song, Y.; Zhong, Y. J.; Liu, Y. X.; Wang, G. K.; Zhong, B. H.; Wu, Z. G.; Guo, X. D. Hard carbon for sodium storage: Mechanism and optimization strategies toward commercialization. Energy Environ. Sci. 2021, 14, 2244–2262.

[3]

Peters, J. F.; Weil, M. A critical assessment of the resource depletion potential of current and future lithium-ion batteries. Resources 2016, 5, 46.

[4]

LeGe, N.; He, X. X.; Wang, Y. X.; Lei, Y. J.; Yang, Y. X.; Xu, J. T.; Liu, M.; Wu, X. Q.; Lai, W. H.; Chou, S. L. Reappraisal of hard carbon anodes for practical lithium/sodium-ion batteries from the perspective of full-cell matters. Energy Environ. Sci. 2023, 16, 5688–5720.

[5]

Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

[6]

Zhang, M. H.; Li, Y.; Wu, F.; Bai, Y.; Wu, C. Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode. Nano Energy 2021, 82, 105738.

[7]

Matei Ghimbeu, C.; Górka, J.; Simone, V.; Simonin, L.; Martinet, S.; Vix-Guterl, C. Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects. Nano Energy 2018, 44, 327–335.

[8]

Hou, B. H.; Wang, Y. Y.; Ning, Q. L.; Li, W. H.; Xi, X. T.; Yang, X.; Liang, H. J.; Feng, X.; Wu, X. L. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: Superb room/low-temperature sodium storage and working mechanism. Adv. Mater. 2019, 31, 1903125.

[9]

Qiao, S. Y.; Zhou, Q. W.; Ma, M.; Liu, H. K.; Dou, S. X.; Chong, S. K. Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 2023, 17, 11220–11252.

[10]

Zhang, Y.; Wang, P. X.; Yin, Y. Y.; Zhang, X. Y.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. Heterostructured SnS-ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chem. Eng. J. 2019, 356, 1042–1051.

[11]

Yin, Y. Y.; Zhang, Y.; Liu, N. N.; Fan, L. S.; Zhang, N. Q. Metal-organic frameworks-derived porous yolk–shell MoP/Cu3P@carbon microcages as high-performance anodes for sodium-ion batteries. Energy Environ. Mater. 2020, 3, 529–534.

[12]

Zhang, Y.; Wang, P. X.; Yin, Y. Y.; Liu, N. N.; Song, N.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode. Carbon 2019, 150, 378–387.

[13]

Zhang, Y.; Fan, L. S.; Wang, P. X.; Yin, Y. Y.; Zhang, X. Y.; Zhang, N. Q.; Sun, K. N. Coupled flower-like Bi2S3 and graphene aerogels for superior sodium storage performance. Nanoscale 2017, 9, 17694–17698.

[14]

Yin, Y. Y.; Fan, L. S.; Zhang, Y.; Liu, N. N.; Zhang, N. Q.; Sun, K. N. MoP hollow nanospheres encapsulated in 3D reduced graphene oxide networks as high rate and ultralong cycle performance anodes for sodium-ion batteries. Nanoscale 2019, 11, 7129–7134.

[15]

Yang, Y. R.; Wu, C.; He, X. X.; Zhao, J. H.; Yang, Z.; Li, L.; Wu, X. Q.; Li, L.; Chou, S. L. Boosting the development of hard carbon for sodium-ion batteries: Strategies to optimize the initial Coulombic efficiency. Adv. Funct. Mater. 2024, 34, 2302277.

[16]

Zhang, Y.; Liu, Z. P.; Li, X.; Fan, L. S.; Shuai, Y.; Zhang, N. Q. Loosening zinc ions from separator boosts stable Zn plating/striping behavior for aqueous zinc ion batteries. Adv. Energy Mater. 2023, 13, 2302126.

[17]

Liu, Z. P.; Guo, Z. K.; Fan, L. S.; Zhao, C. Y.; Chen, A. S.; Wang, M.; Li, M.; Lu, X. Y.; Zhang, J. C.; Zhang, Y. et al. Construct robust epitaxial growth of (101) textured zinc metal anode for long life and high capacity in mild aqueous zinc-ion batteries. Adv. Mater. 2024, 36, 2305988.

[18]

Zhao, C. H.; Huang, Y.; Jiang, B.; Chen, Z. Y.; Yu, X. B.; Sun, X.; Zhou, H.; Zhang, Y.; Zhang, N. Q. The origin of strain effects on sulfur redox electrocatalyst for lithium sulfur batteries. Adv. Energy Mater. 2024, 14, 2302586.

[19]

Zhao, C. H.; Jiang, B.; Huang, Y.; Sun, X.; Wang, M.; Zhang, Y.; Zhang, N. Q. Highly active and stable oxygen vacancies via sulfur modification for efficient catalysis in lithium-sulfur batteries. Energy Environ. Sci. 2023, 16, 5490–5499.

[20]

Zhang, Y.; Qiu, Y.; Fan, L. S.; Sun, X.; Jiang, B.; Wang, M. X.; Wu, X.; Tian, D.; Song, X. Q.; Yin, X. J. et al. Dual-atoms iron sites boost the kinetics of reversible conversion of polysulfide for high-performance lithium-sulfur batteries. Energy Storage Mater. 2023, 63, 103026.

[21]

Chen, X. Y.; Fang, Y. L.; Tian, J. Y.; Lu, H. Y.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Electrochemical insight into the sodium-ion storage mechanism on a hard carbon anode. ACS Appl. Mater. Interfaces 2021, 13, 18914–18922.

[22]

Surta, T. W.; Koh, E.; Li, Z. F.; Fast, D. B.; Ji, X. L.; Greaney, P. A.; Dolgos, M. R. Combining experimental and theoretical techniques to gain an atomic level understanding of the defect binding mechanism in hard carbon anodes for sodium ion batteries. Adv. Energy Mater. 2022, 12, 2200647.

[23]

Zhong, C.; Weng, S. T.; Wang, Z. X.; Zhan, C.; Wang, X. F. Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries. Nano Energy 2023, 117, 108894.

[24]

Moriwake, H.; Kuwabara, A.; Fisher, C. A. J.; Ikuhara, Y. Why is sodium-intercalated graphite unstable? RSC Adv. 2017, 7, 36550–36554.

[25]

Alvin, S.; Chandra, C.; Kim, J. Controlling intercalation sites of hard carbon for enhancing Na and K storage performance. Chem. Eng. J. 2021, 411, 128490.

[26]

Wang, J.; Yan, L.; Ren, Q. J.; Fan, L. L.; Zhang, F. M.; Shi, Z. Q. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery. Electrochim. Acta 2018, 291, 188–196.

[27]

Doeff, M. M.; Ma, Y. P.; Visco, S. J.; De Jonghe, L. C. Electrochemical insertion of sodium into carbon. J. Electrochem. Soc. 1993, 140, L169–L170.

[28]

Yin, X. P.; Sarkar, S.; Shi, S. S.; Huang, Q. A.; Zhao, H. B.; Yan, L. M.; Zhao, Y. F.; Zhang, J. J. Recent progress in advanced organic electrode materials for sodium-ion batteries: Synthesis, mechanisms, challenges and perspectives. Adv. Funct. Mater. 2020, 30, 1908445.

[29]

Zhao, Q.; Lu, Y.; Chen, J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1601792.

[30]

Wei, X. J.; Wang, X. P.; Tan, X.; An, Q. Y.; Mai, L. Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1804458.

[31]

Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power Sources 2014, 247, 391–395.

[32]

Li, Z.; Fang, Y. J.; Zhang, J. T.; Lou, X. W. Necklace-like structures composed of Fe3N@C yolk–shell particles as an advanced anode for sodium-ion batteries. Adv. Mater. 2018, 30, 1800525.

[33]

Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.

[34]

Xu, G. L.; Chen, Z. H.; Zhong, G. M.; Liu, Y. Z.; Yang, Y.; Ma, T. Y.; Ren, Y.; Zuo, X. B.; Wu, X. H.; Zhang, X. Y. et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955–3965.

[35]

Xu, Z. H.; Ye, J. R.; Pan, Y. Y.; Liu, K.; Liu, X. F.; Shui, J. L. Necklace-like Sn@C fiber self-supporting electrode for high-performance sodium-ion battery. Energy Technol. 2022, 10, 2101024.

[36]

Bresser, D.; Passerini, S.; Scrosati, B. Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy Environ. Sci. 2016, 9, 3348–3367.

[37]

Zhao, Y.; Wang, L. P.; Sougrati, M. T.; Feng, Z. X.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. C. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424.

[38]

Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87–104.

[39]

Chen, C.; Huang, Y.; Meng, Z. Y.; Zhang, J. X.; Lu, M. W.; Liu, P. B.; Li, T. H. Insight into the rapid sodium storage mechanism of the fiber-like oxygen-doped hierarchical porous biomass derived hard carbon. J. Colloid Interface Sci. 2021, 588, 657–669.

[40]

Ding, R. D.; Huang, Y. L.; Li, G. X.; Liao, Q.; Wei, T.; Liu, Y.; Huang, Y. J.; He, H. Carbon anode materials for rechargeable alkali metal ion batteries and in-situ characterization techniques. Front. Chem. 2020, 8, 607504.

[41]

Xie, F.; Xu, Z. Y.; Guo, Z. X.; Lu, Y. Q.; Chen, L.; Titirici, M. M.; Hu, Y. S. Disordered carbon anodes for Na-ion batteries— quo vadis. Sci. China Chem. 2021, 64, 1679–1692.

[42]

Zhao, J. H.; He, X. X.; Lai, W. H.; Yang, Z.; Liu, X. H.; Li, L.; Qiao, Y.; Xiao, Y.; Li, L.; Wu, X. Q. et al. Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-Coulombic-efficiency in sodium-ion batteries. Adv. Energy Mater. 2023, 13, 2300444.

[43]

Oberlin, A.; Terriere, G. Graphitization studies of anthracites by high resolution electron microscopy. Carbon 1975, 13, 367–376.

[44]

Thompson, M.; Xia, Q. B.; Hu, Z.; Zhao, X. S. A review on biomass-derived hard carbon materials for sodium-ion batteries. Mater. Adv. 2021, 2, 5881–5905.

[45]

Wang, G.; Yu, M. H.; Feng, X. L. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443.

[46]

Wu, Y. P.; Rahm, E.; Holze, R. Carbon anode materials for lithium ion batteries. J. Power Sources 2003, 114, 228–236.

[47]
International committee for characterization and terminology of carbon “first publication of 30 tentative definitions” [Online]. https://doi.org/10.1016/0008-6223(82)90046-X (accessed Month Day, Year).
[48]

Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.

[49]

Hasegawa, G.; Kanamori, K.; Kannari, N.; Ozaki, J. I.; Nakanishi, K.; Abe, T. Hard carbon anodes for Na-ion batteries: Toward a practical use. ChemElectroChem 2015, 2, 1917–1920.

[50]

Zhao, L. F.; Hu, Z.; Lai, W. H.; Tao, Y.; Peng, J.; Miao, Z. C.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2021, 11, 2002704.

[51]

Zhao, R.; Sun, N.; Xu, B. Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries. Small Struct. 2021, 2, 2100132.

[52]

Zhang, Y. S.; Bailey, J. J.; Sun, Y. G.; Boyce, A. M.; Dawson, W.; Reynolds, C. D.; Zhang, Z. Y.; Lu, X. K.; Grant, P.; Kendrick, E. et al. Applications of advanced metrology for understanding the effects of drying temperature in the lithium-ion battery electrode manufacturing process. J. Mater. Chem. A 2022, 10, 10593–10603.

[53]

Mélinon, P. Vitreous carbon, geometry and topology: A hollistic approach. Nanomaterials 2021, 11, 1694.

[54]

Zhang, M. H.; Li, Y.; Wu, F.; Wang, Z. H.; Bai, Y.; Wu, C. Boosting the ultrahigh initial Coulombic efficiency of porous carbon anodes for sodium-ion batteries via in situ fabrication of a passivation interface. J. Mater. Chem. A 2021, 9, 10780–10788.

[55]

Xie, L. J.; Tang, C.; Song, M. X.; Guo, X. Q.; Li, X. M.; Li, J. X.; Yan, C.; Kong, Q. Q.; Sun, G. H.; Zhang, Q. et al. Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries: A review. J. Energy Chem. 2022, 72, 554–569.

[56]

Meng, Q. S.; Lu, Y. X.; Ding, F. X.; Zhang, Q. Q.; Chen, L. Q.; Hu, Y. S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 2019, 4, 2608–2612.

[57]

Wang, Z. H.; Feng, X.; Bai, Y.; Yang, H. Y.; Dong, R. Q.; Wang, X. R.; Xu, H. J.; Wang, Q. Y.; Li, H.; Gao, H. C. et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2003854.

[58]

Li, Y. Q.; Lu, Y. X.; Meng, Q. S.; Jensen, A. C. S.; Zhang, Q. Q.; Zhang, Q. H.; Tong, Y. X.; Qi, Y. R.; Gu, L.; Titirici, M. M. et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 2019, 9, 1902852.

[59]

Song, Z. Q.; Di, M. X.; Chen, S. H.; Bai, Y. Three-dimensional N/O co-doped hard carbon anode enabled superior stabilities for sodium-ion batteries. Chem. Eng. J. 2023, 470, 144237.

[60]

Lin, Q. W.; Zhang, J.; Lv, W.; Ma, J. B.; He, Y. B.; Kang, F. Y.; Yang, Q. H. A functionalized carbon surface for high-performance sodium-ion storage. Small 2020, 16, 1902603.

[61]

Li, Z. F.; Chen, Y. C.; Jian, Z. L.; Jiang, H.; Razink, J. J.; Stickle, W. F.; Neuefeind, J. C.; Ji, X. L. Defective hard carbon anode for Na-ion batteries. Chem. Mater. 2018, 30, 4536–4542.

[62]

He, X. X.; Lai, W. H.; Liang, Y. R.; Zhao, J. H.; Yang, Z.; Peng, J.; Liu, X. H.; Wang, Y. X.; Qiao, Y.; Li, L. et al. Achieving all-plateau and high-capacity sodium insertion in topological graphitized carbon. Adv. Mater. 2023, 35, 2302613.

[63]

Yoshino, A. The birth of the lithium-ion battery. Angew. Chem., Int. Ed. 2012, 51, 5798–5800.

[64]

Tsai, P. C.; Chung, S. C.; Lin, S. K.; Yamada, A. Ab initio study of sodium intercalation into disordered carbon. J. Mater. Chem. A 2015, 3, 9763–9768.

[65]

Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

[66]

Saurel, D.; Orayech, B.; Xiao, B. W.; Carriazo, D.; Li, X. L.; Rojo, T. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 2018, 8, 1703268.

[67]

Sun, N.; Guan, Z. R. X.; Liu, Y. W.; Cao, Y. L.; Zhu, Q. Z.; Liu, H.; Wang, Z. X.; Zhang, P.; Xu, B. Extended “adsorption–insertion” model: A new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 2019, 9, 1901351.

[68]

Katsuyama, Y.; Nakayasu, Y.; Kobayashi, H.; Goto, Y.; Honma, I.; Watanabe, M. Rational route for increasing intercalation capacity of hard carbons as sodium-ion battery anodes. ChemSusChem 2020, 13, 5762–5768.

[69]

Li, Q.; Liu, X. S.; Tao, Y.; Huang, J. X.; Zhang, J.; Yang, C. P.; Zhang, Y. B.; Zhang, S. W.; Jia, Y. R.; Lin, Q. W. et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Natl. Sci. Rev. 2022, 9, nwac084.

[70]

Sun, N.; Qiu, J. S.; Xu, B. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate. Adv. Energy Mater. 2022, 12, 2200715.

[71]

Ding, J.; Zhou, H.; Zhang, H. L.; Stephenson, T.; Li, Z.; Karpuzov, D.; Mitlin, D. Exceptional energy and new insight with a sodium-selenium battery based on a carbon nanosheet cathode and a pseudographite anode. Energy Environ. Sci. 2017, 10, 153–165.

[72]

Kitsu Iglesias, L.; Antonio, E. N.; Martinez, T. D.; Zhang, L.; Zhuo, Z. Q.; Weigand, S. J.; Guo, J. H.; Toney, M. F. Revealing the sodium storage mechanisms in hard carbon pores. Adv. Energy Mater. 2023, 13, 2302171.

[73]

Chen, X. Y.; Tian, J. Y.; Li, P.; Fang, Y. L.; Fang, Y. J.; Liang, X. M.; Feng, J. W.; Dong, J.; Ai, X. P.; Yang, H. X. et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption–intercalation/filling” hybrid mechanism. Adv. Energy Mater. 2022, 12, 2200886.

[74]

Chen, X. Y.; Liu, C. Y.; Fang, Y. J.; Ai, X. P.; Zhong, F. P.; Yang, H. X.; Cao, Y. L. Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy 2022, 4, 1133–1150.

[75]

Stevens, D. A.; Dahn, J. R. An in situ small-angle x-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J. Electrochem. Soc. 2000, 147, 4428–4431.

[76]

Stevens, D. A.; Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811.

[77]

Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.

[78]

Zhang, B.; Ghimbeu, C. M.; Laberty, C.; Vix-Guterl, C.; Tarascon, J. M. Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy Mater. 2016, 6, 1501588.

[79]

Bai, P. X.; He, Y. W.; Zou, X. X.; Zhao, X. X.; Xiong, P. X.; Xu, Y. H. Elucidation of the sodium-storage mechanism in hard carbons. Adv. Energy Mater. 2018, 8, 1703217.

[80]

Au, H.; Alptekin, H.; Jensen, A. C. S.; Olsson, E.; O’Keefe, C. A.; Smith, T.; Crespo-Ribadeneyra, M.; Headen, T. F.; Grey, C. P.; Cai, Q. et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 2020, 13, 3469–3479.

[81]

Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

[82]

Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004–11015.

[83]

Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888–5892.

[84]

Li, Z. F.; Bommier, C.; Chong, Z. S.; Jian, Z. L.; Surta, T. W.; Wang, X. F.; Xing, Z. Y.; Neuefeind, J. C.; Stickle, W. F.; Dolgos, M. et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater. 2017, 7, 1602894.

[85]

Gomez-Martin, A.; Martinez-Fernandez, J.; Ruttert, M.; Winter, M.; Placke, T.; Ramirez-Rico, J. Correlation of structure and performance of hard carbons as anodes for sodium ion batteries. Chem. Mater. 2019, 31, 7288–7299.

[86]

Alvin, S.; Cahyadi, H. S.; Hwang, J.; Chang, W.; Kwak, S. K.; Kim, J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 2020, 10, 2000283.

[87]

Beda, A.; Villevieille, C.; Taberna, P. L.; Simon, P.; Matei Ghimbeu, C. Self-supported binder-free hard carbon electrodes for sodium-ion batteries: Insights into their sodium storage mechanisms. J. Mater. Chem. A 2020, 8, 5558–5571.

[88]

Chen, X. Y.; Fang, Y. L.; Lu, H. Y.; Li, H.; Feng, X. M.; Chen, W. H.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Microstructure-dependent charge/discharge behaviors of hollow carbon spheres and its implication for sodium storage mechanism on hard carbon anodes. Small 2021, 17, 2102248.

[89]

Morikawa, Y.; Nishimura, S. I.; Hashimoto, R. I.; Ohnuma, M.; Yamada, A. Mechanism of sodium storage in hard carbon: An X-ray scattering analysis. Adv. Energy Mater. 2020, 10, 1903176.

[90]

Liu, M. Q.; Wang, Y. H.; Wu, F.; Bai, Y.; Li, Y.; Gong, Y. T.; Feng, X.; Li, Y.; Wang, X. R.; Wu, C. Advances in carbon materials for sodium and potassium storage. Adv. Funct. Mater. 2022, 32, 2203117.

[91]

Zhang, H. M.; Zhang, W. F.; Ming, H.; Pang, J.; Zhang, H.; Cao, G. P.; Yang, Y. S. Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries. Chem. Eng. J. 2018, 341, 280–288.

[92]

Li, R. R.; He, X. X.; Yang, Z.; Liu, X. H.; Qiao, Y.; Xu, L.; Li, L.; Chou, S. L. Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries. Mater. Chem. Front. 2021, 5, 7595–7605.

[93]

Dahbi, M.; Kiso, M.; Kubota, K.; Horiba, T.; Chafik, T.; Hida, K.; Matsuyama, T.; Komaba, S. Synthesis of hard carbon from argan shells for Na-ion batteries. J. Mater. Chem. A 2017, 5, 9917–9928.

[94]

Wang, H.; Sun, F.; Qu, Z. B.; Wang, K. F.; Wang, L. J.; Pi, X. X.; Gao, J. H.; Zhao, G. B. Oxygen functional group modification of cellulose-derived hard carbon for enhanced sodium ion storage. ACS Sustain. Chem. Eng. 2019, 7, 18554–18565.

[95]

Xu, Z.; Wang, J.; Guo, Z. Y.; Xie, F.; Liu, H. Y.; Yadegari, H.; Tebyetekerwa, M.; Ryan, M. P.; Hu, Y. S.; Titirici, M. M. The role of hydrothermal carbonization in sustainable sodium-ion battery anodes. Adv. Energy Mater. 2022, 12, 2200208.

[96]

Kamiyama, A.; Kubota, K.; Igarashi, D.; Youn, Y.; Tateyama, Y.; Ando, H.; Gotoh, K.; Komaba, S. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem., Int. Ed. 2021, 60, 5114–5120.

[97]

Chen, X. Y.; Sawut, N.; Chen, K.; Li, H.; Zhang, J.; Wang, Z.; Yang, M.; Tang, G.; Ai, X. P.; Yang, H. X. et al. Filling carbon: A microstructure-engineered hard carbon for efficient alkali metal ion storage. Energy Environ. Sci. 2023, 16, 4041–4053.

[98]

Igarashi, D.; Tanaka, Y.; Kubota, K.; Tatara, R.; Maejima, H.; Hosaka, T.; Komaba, S. New template synthesis of anomalously large capacity hard carbon for Na- and K-ion batteries. Adv. Energy Mater. 2023, 13, 2302647.

[99]

Xia, J. L.; Yan, D.; Guo, L. P.; Dong, X. L.; Li, W. C.; Lu, A. H. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv. Mater. 2020, 32, 2000447.

[100]

Yang, J. L.; Wang, X. W.; Dai, W. R.; Lian, X.; Cui, X. H.; Zhang, W. C.; Zhang, K. X.; Lin, M.; Zou, R. Q.; Loh, K. P. et al. From micropores to ultra-micropores inside hard carbon: Toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano-Micro Lett. 2021, 13, 98.

[101]

Yu, K. H.; Wang, X. R.; Yang, H. Y.; Bai, Y.; Wu, C. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 2021, 55, 499–508.

[102]

Alvin, S.; Chandra, C.; Kim, J. Extended plateau capacity of phosphorus-doped hard carbon used as an anode in Na- and K-ion batteries. Chem. Eng. J. 2020, 391, 123576.

[103]

Jin, Q. Z.; Wang, K. L.; Feng, P. Y.; Zhang, Z. C.; Cheng, S. J.; Jiang, K. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries. Energy Storage Mater. 2020, 27, 43–50.

[104]

Tang, Z.; Zhang, R.; Wang, H. Y.; Zhou, S. Y.; Pan, Z. Y.; Huang, Y. C.; Sun, D.; Tang, Y. G.; Ji, X. B.; Amine, K. et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun. 2023, 14, 6024.

[105]

Shao, W. L.; Cao, Q.; Liu, S. Y.; Zhang, T. P.; Song, Z. H.; Song, C.; Weng, Z. H.; Jian, X. G.; Hu, F. Y. Replacing “alkyl” with “aryl” for inducing accessible channels to closed pores as plateau-dominated sodium-ion battery anode. SusMat 2022, 2, 319–334.

[106]

He, X. X.; Zhao, J. H.; Lai, W. H.; Li, R. R.; Yang, Z.; Xu, C. M.; Dai, Y. Y.; Gao, Y.; Liu, X. H.; Li, L. et al. Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial Coulombic efficiency for sodium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 44358–44368.

[107]

Liu, M. C.; Zhang, J. Y.; Guo, S. H.; Wang, B.; Shen, Y. F.; Ai, X. P.; Yang, H. X.; Qian, J. F. Chemically presodiated hard carbon anodes with enhanced initial Coulombic efficiencies for high-energy sodium ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 17620–17627.

[108]

Cheng, D. J.; Li, Z. H.; Zhang, M. L.; Duan, Z. H.; Wang, J.; Wang, C. Y. Engineering ultrathin carbon layer on porous hard carbon boosts sodium storage with high initial Coulombic efficiency. ACS Nano 2023, 17, 19063–19075.

[109]

Zhao, X.; Ding, Y.; Xu, Q.; Yu, X.; Liu, Y.; Shen, H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial Coulombic efficiency: A general method. Adv. Energy Mater. 2019, 9, 1803648.

[110]

Dong, R. Q.; Wu, F.; Bai, Y.; Li, Q. H.; Yu, X. Q.; Li, Y.; Ni, Q.; Wu, C. Tailoring defects in hard carbon anode towards enhanced Na storage performance. Energy Mater. Adv. 2022, 2022, 9896218.

[111]

Lu, H. Y.; Chen, X. Y.; Jia, Y. L.; Chen, H.; Wang, Y. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon–electrolyte interface towards practical sodium ion batteries. Nano Energy 2019, 64, 103903.

[112]

Xiao, B. W.; Soto, F. A.; Gu, M.; Han, K. S.; Song, J. H.; Wang, H.; Engelhard, M. H.; Murugesan, V.; Mueller, K. T.; Reed, D. et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes. Adv. Energy Mater. 2018, 8, 1801441.

[113]

Moeez, I.; Jung, H. G.; Lim, H. D.; Chung, K. Y. Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 41394–41401.

[114]

Fang, H. Y.; Gao, S. N.; Ren, M.; Huang, Y. H.; Cheng, F. Y.; Chen, J.; Li, F. J. Dual-function presodiation with sodium diphenyl ketone towards ultra-stable hard carbon anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202214717.

[115]

Zhang, T. Q.; Wang, R.; He, B. B.; Jin, J.; Gong, Y. S.; Wang, H. W. Recent advances on pre-sodiation in sodium-ion capacitors: A mini review. Electrochem. Commun. 2021, 129, 107090.

[116]

Oh, J. A. S.; Deysher, G.; Ridley, P.; Chen, Y. T.; Cheng, D. Y.; Cronk, A.; Ham, S. Y.; Tan, D. H. S.; Jang, J.; Nguyen, L. H. B. et al. High-performing all-solid-state sodium-ion batteries enabled by the presodiation of hard carbon. Adv. Energy Mater. 2023, 13, 2300776.

[117]

Li, W. B.; Guo, X. N.; Song, K. M.; Chen, J. C.; Zhang, J. Y.; Tang, G. C.; Liu, C. T.; Chen, W. H.; Shen, C. Y. Binder-induced ultrathin SEI for defect-passivated hard carbon enables highly reversible sodium-ion storage. Adv. Energy Mater. 2023, 13, 2300648.

[118]

Xia, J. L.; Lu, A. H.; Yu, X. F.; Li, W. C. Rational design of a trifunctional binder for hard carbon anodes showing high initial Coulombic efficiency and superior rate capability for sodium-ion batteries. Adv. Funct. Mater. 2021, 31, 2104137.

[119]

Lu, Z. Y.; Geng, C. N.; Yang, H. J.; He, P.; Wu, S. C.; Yang, Q. H.; Zhou, H. S. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proc. Natl. Acad. Sci. USA 2022, 119, e2210203119.

[120]

Yang, L.; Hu, M. X.; Zhang, H. W.; Yang, W.; Lv, R. T. Pore structure regulation of hard carbon: Towards fast and high-capacity sodium-ion storage. J. Colloid Interface Sci. 2020, 566, 257–264.

[121]

Liang, Y. Z.; Song, N.; Zhang, Z. C. Y.; Chen, W. H.; Feng, J. K.; Xi, B. J.; Xiong, S. L. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv. Mater. 2022, 34, 2202673.

[122]

Yin, X. P.; Lu, Z. X.; Wang, J.; Feng, X. C.; Roy, S.; Liu, X. S.; Yang, Y.; Zhao, Y. F.; Zhang, J. J. Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 2022, 34, 2109282.

[123]

Jian, W. B.; Qiu, X. Q.; Lai, Y. Y.; Yin, P. C.; Lin, J. X.; Zhang, W. L. Elucidation of the mechanism of K-ion storage of hard carbon and soft carbon anodes in ether- and ester-based electrolytes. Adv. Energy Mater. 2023, 13, 2301303.

[124]

Yi, X. L.; Li, X. H.; Zhong, J.; Wang, S. W.; Wang, Z. X.; Guo, H. J.; Wang, J. X.; Yan, G. C. Unraveling the mechanism of different kinetics performance between ether and carbonate ester electrolytes in hard carbon electrode. Adv. Funct. Mater. 2022, 32, 2209523.

[125]

Yin, X. P.; Wang, Z. M.; Liu, Y.; Lu, Z. X.; Long, H. L.; Liu, T.; Zhang, J. J.; Zhao, Y. F. Insight into the influence of ether and ester electrolytes on the sodium-ion transportation kinetics for hard carbon. Nano Res. 2023, 16, 10922–10930.

[126]

Ma, M. Y.; Cai, H. R.; Xu, C. L.; Huang, R. Z.; Wang, S. R.; Pan, H. L.; Hu, Y. S. Engineering solid electrolyte interface at nano-scale for high-performance hard carbon in sodium-ion batteries. Adv. Funct. Mater. 2021, 31, 2100278.

[127]

Cheng, F. Y.; Cao, M. L.; Li, Q.; Fang, C.; Han, J. T.; Huang, Y. H. Electrolyte salts for sodium-ion batteries: NaPF6 or NaClO4. ACS Nano 2023, 17, 18608–18615.

[128]

Liu, G. Y.; Wang, Z. Q.; Yuan, H. M.; Yan, C. L.; Hao, R.; Zhang, F. C.; Luo, W.; Wang, H. Z.; Cao, Y. L.; Gu, S. et al. Deciphering electrolyte dominated Na+ storage mechanisms in hard carbon anodes for sodium-ion batteries. Adv. Sci. 2023, 10, 2305414.

[129]

Dong, R. Q.; Zheng, L. M.; Bai, Y.; Ni, Q.; Li, Y.; Wu, F.; Ren, H. X.; Wu, C. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 2021, 33, 2008810.

[130]

Yoon, G.; Kim, H.; Park, I.; Kang, K. Conditions for reversible Na intercalation in graphite: Theoretical studies on the interplay among guest ions, solvent, and graphite host. Adv. Energy Mater. 2017, 7, 1601519.

[131]

Li, S. Y.; Yuan, H.; Ye, C. R.; Wang, Y. Z.; Wang, L.; Ni, K.; Zhu, Y. W. Sucrose-derived hard carbon wrapped with reduced graphene oxide as a high-performance anode for sodium-ion batteries. J. Mater. Chem. A 2023, 11, 9816–9823.

[132]

Lohani, H.; Kumar, A.; Kumari, P.; Ahuja, A.; Gautam, M.; Sengupta, A.; Mitra, S. Artificial organo-fluoro-rich anode electrolyte interface and partially sodiated hard carbon anode for improved cycle life and practical sodium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 37793–37803.

[133]

Hirsh, H. S.; Sayahpour, B.; Shen, A.; Li, W. K.; Lu, B. Y.; Zhao, E. Y.; Zhang, M. H.; Meng, Y. S. Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life. Energy Storage Mater. 2021, 42, 78–87.

[134]

Liang, H. J.; Gu, Z. Y.; Zhao, X. X.; Guo, J. Z.; Yang, J. L.; Li, W. H.; Li, B.; Liu, Z. M.; Li, W. L.; Wu, X. L. Ether-based electrolyte chemistry towards high-voltage and long-life Na-ion full batteries. Angew. Chem., Int. Ed. 2021, 60, 26837–26846.

Nano Research
Pages 6038-6057
Cite this article:
Wang Y, Li M, Zhang Y, et al. Hard carbon for sodium storage: Mechanism and performance optimization. Nano Research, 2024, 17(7): 6038-6057. https://doi.org/10.1007/s12274-024-6546-0
Topics:

2355

Views

12

Crossref

10

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 09 January 2024
Revised: 03 February 2024
Accepted: 03 February 2024
Published: 16 March 2024
© Tsinghua University Press 2024
Return